Лист 12х21н5т цены г. москва

Алан-э-Дейл       14.02.2023 г.

Химический состав

Стандарт C S P Mn Cr Si Ni Fe Cu V Mo W
TУ 14-1-1529-2003 ≤0.12 ≤0.02 ≤0.035 1-2 17-19 ≤0.8 11-13 Остаток ≤0.3 ≤0.2 ≤0.5 ≤0.2
TУ 14-3Р-55-2001 ≤0.12 ≤0.015 ≤0.03 1-2 17-19 ≤0.8 11-13 Остаток ≤0.3
ГОСТ 5632-72 ≤0.12 ≤0.02 ≤0.035 ≤2 17-19 ≤0.8 11-13 Остаток ≤0.4 ≤0.2 ≤0.5 ≤0.2
TУ 14-158-137-2003 ≤0.12 ≤0.02 ≤0.035 ≤2 17-19 ≤0.8 11-13 Остаток
TУ 14-3-460-2003 ≤0.12 ≤0.025 ≤0.035 1-2 17-19 ≤0.8 11-13 Остаток ≤0.3 ≤0.2 ≤0.5 ≤0.2

Fe — основа.
По ГОСТ 5632-72, ТУ 14-1-1529-2003 и РД 9257-76 содержание Ti % = 5С % — 0,7 %. Для деталей авиационной техники содержание Мо % ≤ 0,30%.
По ТУ 14-1-1529-2003 массовая доля остаточных элементов: вольфрама, ванадия, молибдена должна соответствовать требованиям ГОСТ 5632. Для стали 12Х18Н12Т-Ш содержание серы должно быть ≤ 0,15 % содеражание фосфора ≤ 0,30 %.
По ТУ 14-3-460-2003 содержание Ti % = 5·(С-0,2) % — 0,7 %. Массовая доля остаточных элементов: вольфрама, ванадия, молибдена должна соответствовать требованиям ГОСТ 5632.
По ТУ 14-158-137-2003 содержание Ti % = 5С % — 0,7 %. Допускается введение церия и других РЗМ по расчету на 0,2-0,3 %, которые химическим анализом не определяются.
По ТУ 14-3Р-55-2001 допускается технологическая добавка редкоземельных элементов для улучшения качества металла. Содержание остаточных элементов — по ГОСТ 5632. Содержание Ti% = 5·(С-0,02) % — 0,7 %.

7.1 Термическая обработка изделий из стабилизированных хромоникелевых сталей 12Х18Н9Т, 12Х18Н10Т, 08Х18Н10Т 12Х18Н12Т, 08Х18Н12Т, 10Х14Г14Н4Т, 08Х18Н12Б, 12Х18Н9ТЛ, 10Х18Н11БЛ.

7.1.1
В зависимости от назначения, условий работы, агрессивности среды изделия
подвергают:

а)
закалке (аустенизации);

б)
стабилизирующему отжигу;

в)
отжигу для снятия напряжений;

г)
ступенчатой обработке.

7.1.2
Изделия закаливают для того, чтобы:

а)
предотвратить склонность к межкристаллитной коррозии (изделия работают при
температуре до 350 °С);

б)
повысить стойкость против общей коррозии;

в)
устранить выявленную склонность к межкристаллитной коррозии;

г)
предотвратить склонность к ножевой коррозии (изделия сварные работают в
растворах азотной кислоты);

д)
устранить остаточные напряжения (изделия простой конфигурации);

е)
повысить пластичность материала.

7.1.3 Закалку изделий необходимо проводить по режиму: нагрев до 1050 — 1100
°С, детали с толщиной материала до 10 мм охлаждать на воздухе, свыше 10 мм — в
воде. Сварные изделия сложной конфигурации во избежание поводок следует
охлаждать на воздухе.

7.1.4 Время выдержки при нагреве под закалку для изделий с
толщиной стенки до 10
мм — 30 мин, свыше 10 мм — 20 мин + 1 мин на 1
мм максимальной толщины.

7.1.5
При закалке изделий, предназначенных для работы в азотной кислоте, температуру
нагрева под закалку необходимо держать на верхнем пределе (выдержка при этом
сварных изделий должна быть не менее 1 ч).

7.1.6
Стабилизирующий отжиг применяется для:

а)
предотвращения склонности к межкристаллитной коррозии (изделия работают при
температуре свыше 350 °С);

б)
снятия внутренних напряжений;

в)
ликвидации обнаруженной склонности к межкристаллитной коррозии, если по
каким-либо причинам закалка нецелесообразна.

7.1.8
Стабилизирующему отжигу для предотвращения склонности к межкристаллитной коррозии
изделий, работающих при температуре более 350 °С, можно подвергать стали,
содержащие не более 0,08 % углерода.

7.1.10
При термической обработке крупногабаритных сварных изделий разрешается
проводить местный стабилизирующий отжиг замыкающих швов согласно п. , при этом все свариваемые
элементы должны быть подвергнуты стабилизирующему отжигу до сварки.

7.1.11
При проведении местного стабилизирующего отжига необходимо обеспечить
одновременно равномерные нагрев и охлаждение по всей длине сварного шва и
прилегающих к нему зон основного металла на ширину, равную двум — трем ширинам
шва, но не более 200 мм.

Ручной
способ нагрева недопустим.

7.1.12
Для более полного снятия остаточных напряжений отжиг изделий из
стабилизированных хромоникелевых сталей проводят по режиму: нагрев до 870 — 900
°С; выдержка 2 — 3 ч, охлаждение с печью до 300 °С (скорость охлаждения 50 — 100
град/ч), далее на воздухе.

7.1.13 Отжиг проводят, соблюдая требования п. настоящего стандарта.

7.1.14
Ступенчатая обработка проводится для:

а)
снятия остаточных напряжений и предотвращения склонности к межкристаллитной
коррозии;

б)
для предотвращения склонности к межкристаллитной коррозии сварных соединений
сложной конфигурации с резкими переходами по толщине;

в)
изделия со склонностью к межкристаллитной коррозии, устранить которую другим
способом (закалкой или стабилизирующим отжигом) нецелесообразно.

7.1.15 Ступенчатую обработку необходимо проводить по режиму:
нагрев до 1050 — 1100 °С; выдержка согласно п. ; охлаждение с
максимально возможной скоростью до 870 — 900 °С; выдержка при 870 — 900 °С в
течение 2 — 3 ч; охлаждение с печью до 300 °С (скорость- 50 — 100 град/ч), далее на воздухе.

7.1.16
Для ускорения процесса ступенчатую обработку рекомендуется проводить в
двухкамерных или в двух печах, нагретых до различной температуры. При переносе
из одной печи в другую температура изделий не должна быть ниже 900 °С.

7.1.17 Ступенчатую обработку разрешается проводить при соблюдении
требований п. .

7.1.18
Отливки из стабилизированных сталей 12Х18Н9ТЛ,
10X18H11БЛ
следует подвергать закалке по режиму, указанному в п. и .

7.1.19
Для более полной аустенизации стали 12Х18Н9ТЛ
закалку необходимо проводить с 1100 °С, стали 10Х18Н11БЛ с 1150 °С.

7.1.20
При работе в средах, вызывающих коррозионное растрескивание, отливки следует
подвергать стабилизирующему отжигу по режиму, указанному в п. .

Стандарты

Название Код Стандарты
Трубы стальные и соединительные части к ним В62 ГОСТ 11068-81, TУ 14-3-1327-85
Ленты В34 ГОСТ 4986-79, TУ 14-1-2298-77, TУ 14-1-2299-77
Листы и полосы В33 ГОСТ 5582-75, ГОСТ 7350-77, TУ 14-1-1150-74, TУ 14-1-2476-78, TУ 14-1-617-73
Классификация, номенклатура и общие нормы В30 ГОСТ 5632-72
Сортовой и фасонный прокат В32 ГОСТ 5949-75, ОСТ 1 92049-76, TУ 14-1-1273-75, TУ 14-1-1283-75, TУ 14-11-245-88
Болванки. Заготовки. Слябы В31 ОСТ 3-1686-90, ОСТ 1 90232-76
Термическая и термохимическая обработка металлов В04 СТП 26.260.484-2004
Сварка и резка металлов. Пайка, клепка В05 TУ 14-1-1464-75
Обработка металлов давлением. Поковки В03 TУ 3-1585-89, TУ 14-1-1530-75, TУ 14-1-2918-80

Описание

Сталь 08Х18Н12Т применяется: для производства холоднокатаного листа и ленты повышенной прочности; различных деталей и конструкций, свариваемых точечной сваркой; труб и изготовления сварной аппаратуры, работающей в средах повышенной агрессивности (растворах азотной, уксусной кислот, растворах щелочей и солей); конструкций свариваемых точечной сваркой; конструкций корпусов кораблей, судов, изделий судовой техники и верфей (трубопроводов, арматуры, обтекателей различной аппаратуры); труб бесшовных горячекатаных обточенных и расточенных, предназначенных для печей и коммуникаций нефтеперерабатыващих заводов.

Примечание

Сталь маломагнитная, коррозионностойкая.
Стабилизированная хромоникелевая сталь аустенитного класса.
Магнитная проницаемость μ ≤ 1,01 гс/э. Сталь обычно не содержит α-фазы. При неблагоприятном соотношении легирующих элементов и углерода магнитная проницаемость может быть до 1,50 гс/э. Термическая обработка — эустенизация или стабилизация, горячая обработка давлением и гибка при температурах, праменяемых для горячей деформации не изменяют магнитную проницаемость, а наклеп выше 5−10% при комнатной или пониженных температурах заметно повышает ее.
Сталь 08Х18Н12Т практически не имеет ферритной фазы и обладает более высокой стойкостью к межкристаллитной коррозии, чем сталь 08Х18Н10Т.
Сталь имеет низкие антифрикционные свойства и склонна к образованию задиров, поэтому обычно не применяется в парах трения. Для улучшения антифрикционных свойств производится азотирование по специальным режимам с применением хлористого аммония для удаления окисной пленки.

Химический состав в % стали 12Х18Н10Т

C Si Mn P S Cr Mo Ni V Ti Cu W Fe
<0,12 <0,8 <2,0 <0,035 <0,02 17,0-19,0 <0,5 9,0-11,0 <0,2 <0,8 <0,4 <0,2 Остальное

Химический состав 12Х18Н10Т регламентирует ГОСТ 5632-72

  1. Достаточно большой процент хрома (17%–19%).
  2. Легирующая добавка никеля (9%–11%).
  3. Углерод в сплаве – небольшая концентрация (0,1 %).
  4. Легирующий элемент – титан.
  5. Кремний (0,8 %).

Влияние химсостава на свойства стали 12Х18Н10Т

Основные добавки сложнолегированной стали значительно влияют на ее свойства:

  1. Хром повышает антикоррозийные качества.
  2. Благодаря введению никеля, сталь входит в разряд аустенитов, и сочетает все технологические и эксплуатационные свойства нержавеющих сталей.
  3. Введение в сплав алюминия, титана и кремния придает 12Х18Н10Т качества ферритной стали.
  4. Титан создает карбидообразующий эффект, и предотвращает риск межкристаллитной коррозии.
  5. Марганец позволяет изготавливать сталь с мелкозернистой структурой.
  6. Кремний увеличивает плотность и улучшает степень текучести. В то же время он снижает уровень пластичности, что усложняет прокатку холодным способом.
  7. Содержание фосфора не должно превышать 0,035 %, так как он провоцирует снижение механических свойств, что осложняет использование стали в криогенной области.

Особенности и преимущества металла

В качестве составляющих используется большое число легирующих веществ, которые обуславливают ее свойства. Главными компонентами выступают хром и никель.

Хром дает возможность к пассивации и исключает корродирование на поверхности материала. Его процентное содержание – 17-19%.


Проволока

Благодаря никелю нержавеющая сталь 12Х18Н10Т относится к аустенитам, она приобретает такие особенности, как технологичность и высокие эксплуатационные характеристики. Прокат ее осуществляется без нагрева или с повышением температуры, при этом конструкция будет характеризоваться коррозионной стойкостью в агрессивной среде, чего нельзя сказать о ферритных материалах. Концентрация компонента составляет 9-11%.

За счет использования Ni и Cr обеспечивается стабильность материала при охлаждении. Для получения аустенита при t=900 С требуется всего 0,1% углерода, что обусловлено его воздействием на металл. Также в состав изделия входят Ti, Al и Si, которые обеспечивают ферритные качества.

Титан используется в качестве сильного карбидообразующего компонента, что исключает образование коррозии в кристаллической решетке. При реакции с углеродом образуется тугоплавкий карбид, что приводит к снижению в составе свободного хрома за счет взаимодействия его с углеродом.

Кремний предназначен для увеличения поровой плотности материала путем выведения газа из структуры. Это положительно сказывается на повышении прочностных характеристик, предела текучести, но снижает пластичность, что негативно сказывается на качестве холодной прокатки. Содержание – 0,8%.

Входящий в состав стали 12Х18Н10Т марганец снижает скорость образования зерна, что улучшает структуру. Жаростойкость

Среда Воздух Воздух
Температура, °С 750 650
Группа стойкости или балл 4-5 2-3

Небольшое количество фосфора в составе (0,035%) обусловлено его свойствами. Он негативно сказывается на механических качествах состава, что нежелательно для металла, используемого в криогенной технике. При понижении температуры он способен снизить пластичность материала.

Металл является пластичным и вязким при ударах, что является преимуществом. Недостатками считаются малая коррозионная стойкость к хлорсодержащим веществам, серной и соляной кислоте.

Вернуться к содержанию

Химический состав в % стали 12Х18Н10Т

C Si Mn P S Cr Mo Ni V Ti Cu W Fe
<0,12 <0,8 <2,0 <0,035 <0,02 17,0-19,0 <0,5 9,0-11,0 <0,2 <0,8 <0,4 <0,2 Остальное

Химический состав 12Х18Н10Т регламентирует ГОСТ 5632-72

  1. Достаточно большой процент хрома (17%–19%).
  2. Легирующая добавка никеля (9%–11%).
  3. Углерод в сплаве – небольшая концентрация (0,1 %).
  4. Легирующий элемент – титан.
  5. Кремний (0,8 %).

Влияние химсостава на свойства стали 12Х18Н10Т

Основные добавки сложнолегированной стали значительно влияют на ее свойства:

  1. Хром повышает антикоррозийные качества.
  2. Благодаря введению никеля, сталь входит в разряд аустенитов, и сочетает все технологические и эксплуатационные свойства нержавеющих сталей.
  3. Введение в сплав алюминия, титана и кремния придает 12Х18Н10Т качества ферритной стали.
  4. Титан создает карбидообразующий эффект, и предотвращает риск межкристаллитной коррозии.
  5. Марганец позволяет изготавливать сталь с мелкозернистой структурой.
  6. Кремний увеличивает плотность и улучшает степень текучести. В то же время он снижает уровень пластичности, что усложняет прокатку холодным способом.
  7. Содержание фосфора не должно превышать 0,035 %, так как он провоцирует снижение механических свойств, что осложняет использование стали в криогенной области.

Общее описание ключевых параметров

Итак, можно начать с того, что химический состав стали регламентируется довольно старым ГОСТ 5632-72. Среди однозначных преимуществ этого вида материала выделяется высокая ударная вязкость, а также высокая пластичность. Так как марка сплава относится к аустенитному классу, то, естественно, она проходит термическую обработку. Эта процедура заключается в процессе закаливания при температуре от 1050 до 1080 градусов по Цельсию, с последующим охлаждением материала в воде. Проведение данной процедуры обеспечивает достижение максимальных показателей вязкости и пластичности. Прочность, а также твердость материала будут примерно на среднем уровне.

Еще один важный момент заключается в том, что при работе с температурами до +600 градусов по Цельсию, характеристики 12х18н10т позволяют применять сплав в качестве жаропрочного. В качестве основных легирующих элементов используется хром и никель.

Еще одно важное свойство — это то, что однофазные сплавы обладают устойчивой структурой аустенитного класса с малым количеством карбидов титана. Это вещество добавляется для того, чтобы избежать такого недостатка, как межкристаллитная коррозия

Уровень прочности сталей, принадлежащих к аустенитным и аустенитно-ферритным классам, не превышает предела в 700-850 МПа.

Химический состав стали 12х1мф

Данный тип стали является ограниченно свариваемым, используется при изготовлении деталей, применяемых при высоких температурах 540-580 градусов. При комнатной температуре имеет плотность равную 7800 кг/м3.

Массовая доля элементов, % не более
Углерод Кремний Марганец Хром Никель Молибден Ванадий Медь Сера Фосфор
0.10-0.15 0.17-0.37 0.40-0.70 0.90-1.20 не более 0.25 0.25-0.35 0.15-0.30 0.20 0.025 0.025

Для каждой трубы 12Х1МФ проводятся механические испытания (прочность, растяжение, ползучесть, ударная вязкость, ударный изгиб, гидравлическое давление и т.д). Все эти данные, как и химический состав, вносятся в сертификаты качества, которые поставляются с каждой партией.

Образец надежности

Из стали 12Х1МФ производят трубы для паровых котлов и трубопроводов высокого давления.

Трубная продукция производится холодным или горячим способом по ТУ 14-3р-55-2001 (холоднодеформированные и горячедеформированные).

Каждое изделие маркируется цветной краской по всей длине, либо по соглашению с изготовителем только кольцевыми полосами по концам.

Цена на данный вид продукции зависит от множества параметров. Главными параметрами являются состояние и год изготовления. Мы предлагаем купить трубу 12Х1МФ как малых диаметров, так и больших.

Вся продукция в наличии на нашем складе. Не нужно ждать. Просто позвоните нам!

Мы без проблем организуем доставку до Вашего склада в Челябинск, Москву, Екатеринбург, Тюмень, Пермь, Уфу, Барнаул, а так же в другие регионы.

Котельные трубы — особый вид проката, использующийся в условиях высоких температур и давлений. Часто это спряжено с агрессивным воздействием среды, в случае недостаточного уровня водоподготовки. Для производства бесшовных труб используется сталь, специально созданная для производства жаропрочных изделий.

Особенности

Металл создан по требованиям ГОСТ 5520 – 79 и отличается наличием многих строго дозированных примесей в количестве 0,03 – 1,2 %. Сложность химического состава определяет особые характеристики стали. В ее состав входят:

В результате трубы ГОСТ 20072 – 74 (химический состав стали) жаростойкая (производится по ТУ 14-3р-55-2001) может выдерживать температуры 570-585 °С и работать в течение 10 000 часов без необходимости замены. Стандарты аналогичны международным DIN, WNr (1.7715, 14MoV6-3), BS (1503-660-440) и UNE (13MoCrV6).

При температурах 600 0С и выше на стенках образуется окалина, ухудшающая физические свойства металла.

12х1МФ по ГОСТ и ТУ отличаются ограниченной сваримостью. Это значит, что перед сваркой их необходимо предварительно подогреть до Т= 100 – 120 0С и затем выполнить термообработку. Только в таком случае швы будут герметичными, и обладать требуемой прочностью.

Использование

Данный вид труб, продается компанией «УралМеталлЭнерго» в неограниченном количестве со склада. Компания работает на рынке трубной продукции более 10 лет и поддерживает тесные производственные контакты со всеми металлургическими заводами России.

В ассортименте товарных позиций компании более 1000 наименований. Ознакомится с ценами, Вы можете в прайсе, который находится на нашем сайте. Применяются изделия из жаропрочной стали в:

  1. паропроводах;
  2. пароперегревателях;
  3. коллекторах;
  4. энергооборудовании ТЭС.

Стоимость несколько выше обычной из-за сложности изготовления и особых характеристик изделий. Помимо высокой термостойкости, трубы отлично выдерживают резкие перепады температур, не деформируясь и не разрушаясь при этом. Технология монтажа паропроводов несколько осложняется особенностями металла и требует применения специальных методов сварки.

Данный вид трубной продукции можно приобрести по безналичному расчету партиями любого объема со складов . Для постоянных клиентов и крупных заказчиков предусмотрены специальные условия и работает система скидок. Наличие требуемой продукции можно увидеть в режиме онлайн по системе 1С. за отгрузкой тоже можно наблюдать в реальном режиме.

Широкий ассортимент трубного проката выводит компанию в ряд самых удобных и надежных поставщиков региона. Складской запас снижает время ожидания доставки до минимума.

Сталь 12Х18Н10Т легирующие элементы

Сталь марки 12х18н10т – нержавеющая титаносодержащая сталь аустенитного класса. Хим. состав марки утверждён ГОСТ 5632-72 нержавеющих сталей аустенитного класса. Основные преимущества 12х18н10т: большая пластичность и ударная вязкость. Наилучшей термической обработкой для сталей этого класса является закалка с температурой 10500С-10800С в воде, после процесса закалки мех. свойства стали отличаются высокой вязкостью и пластичностью, но низкими прочностью и твёрдостью. Стали аустенитного класса используют как жаропрочные при температурах до 6000С Главными легирующими элементами являются Хром и Никель. Однофазные стали имеют устойчивую структуру однородного аустенита с небольшим содержанием карбидов Tитана (для избежания межкристаллитной коррозии. Подобная структура образуется после процесса закалки с температур 10500С-10800С). Аустенитные и и аустенитно-ферритовые стали обладают относительно небольшим уровнем прочности (700-850МПа).

Химический состав

Стандарт C S P Mn Cr Si Ni Fe Cu N Al V Ti Mo W
ОСТ 1 90090-79 0.13-0.19 ≤0.025 ≤0.025 0.5-1 17-19 3.8-4.5 10-13 Остаток ≤0.3 ≤0.05 0.12-0.33 ≤0.05 0.4-0.7 ≤0.2 ≤0.2
TУ 14-1-561-73 0.12-0.17 ≤0.03 ≤0.035 0.5-1 17-19 3.8-4.5 11-13 Остаток ≤0.3 0.13-0.35 ≤0.2 0.4-0.7 ≤0.3 ≤0.2
TУ 14-1-997-74 0.12-0.17 ≤0.03 ≤0.035 0.5-1 17-19 3.8-4.5 11-13 Остаток ≤0.2 0.13-0.35 0.4-0.7
TУ 14-1-3669-83 0.12-0.17 ≤0.03 ≤0.035 0.5-1 17-19 3.8-4.5 12-13 Остаток ≤0.2 0.13-0.35 0.4-0.7

Fe — основа.
По ГОСТ 5632-72 и ТУ 14-1-997-74 химический состав приведен для стали марки 15Х18Н12С4ТЮ (ЭИ654).
По ОСТ 1 90090-79 химический состав приведен для стали марки 15Х18Н12С4ТЮЛ (ЭИ654Л).
По ТУ 14-1-3669-83 химический состав приведен для стали марки 15Х18Н12С4ТЮ (ЭИ654) и 15Х18Н12С4ТЮ-Ш (ЭИ654-Ш). Содержание серы в стали марки и 15Х18Н12С4ТЮ-Ш (ЭИ654-Ш) не должно превышать 0,015%. В готовом прокате, независимо от марки стали, допускаются следующие отклонения от норм химического состава: по углероду +0,010 %, по хрому +0,20/-0,10 %, по никелю +0,20 %, по титану -0,020 %, по кремнию -0,10 %, по алюминию ±0,030 %. Содержание остаточных элементов — в соответствии с ГОСТ 5632.
По ТУ 14-1-561-73 химический состав приведен для стали марок 15Х18Н12С4ТЮ (ЭИ654), 15Х18Н12С4ТЮ-Ш (ЭИ654-Ш). Допускаются отклонения по химическому составу: по углероду ±0,010 %, по титану -0,020 %, по алюминию ±0,020 %. Содержание серы в металле электрошлакового переплава не должно превышать 0,015 %. Остаточное содержание меди не должно превышать 0,30 %, молибдена — 0,30 %, ванадия -0,20 %, вольфрама — 0,20 %.
По ТУ 14-1-915-74 химический состав приведен для стали марки 15Х18Н12С4ТЮ-Ш (ЭИ654-Ш). Допускаются отклонения по химическому составу: по углероду +0,010 %, по хрому +0,20/-0,10 %, по никелю +0,20 %, по титану -0,020 %, по кремнию -0,10 %, по алюминию ±0,030 %. Допускается остаточная массовая доля вольфрама и ванадия не более 0,20 % каждого, молибдена и меди — не более 0,30 % каждого.

Механические характеристики

Сечение, мм t отпуска, °C sТ|s0,2, МПа σB, МПа d5, % y, % кДж/м2, кДж/м2 Твёрдость по Бринеллю, МПа HRC
Закалка в масло от 840-860 °C (выдержка 2,5-4,0 часа в зависимости от толщины и массы заготовки) с последующим отпуском на воздухе
≤120 600-630 590 785 15 50 686 235-277
Закалка + Отпуск
≤40 1370 1570 12 38 49-53
Закалка в масло с 880 °С + отпуск
300 1390 1570 9 44 490 450
Диски диаметром 755-915 мм, толщиной 35-110 мм. Втулка диаметром 115-400 мм НВ 212-223 . Образец продольный
430-480 580-690 7 16-23
Закалка в масло от 840-860 °C (выдержка 2,5-4,0 часа в зависимости от толщины и массы заготовки) с последующим отпуском на воздухе
≤200 640-660 490 685 15 45 588 212-248
Закалка + Отпуск
500-800 345 590 12 33 390 174-217
Закалка в масло с 880 °С + отпуск
400 1310 1410 10 50 590 400
Диски диаметром 755-915 мм, толщиной 35-110 мм. Втулка диаметром 115-400 мм НВ 212-223 . Образец продольный
365 430 7 13-30
Закалка в масло от 840-860 °C (выдержка 2,5-4,0 часа в зависимости от толщины и массы заготовки) с последующим отпуском на воздухе
≤50 560-580 785-880 980 11 45 686 293-331
Закалка + Отпуск
100-300 395 615 15 40 540 187-229
Закалка в масло с 880 °С + отпуск
500 1080 1200 15 54 880 350
Диски диаметром 755-915 мм, толщиной 35-110 мм. Втулка диаметром 115-400 мм НВ 212-223 . Образец тангенциальный
420-510 610-710 17 54-61
Закалка в масло от 840-860 °C (выдержка 2,5-4,0 часа в зависимости от толщины и массы заготовки) с последующим отпуском на воздухе
≤80 560-600 640-785 785 13 42 588 229-286
Закалка + Отпуск
300-500 395 615 13 35 490 187-229
Закалка в масло с 880 °С + отпуск
600 840 930 19 63 1470 270
Диски диаметром 755-915 мм, толщиной 35-110 мм. Втулка диаметром 115-400 мм НВ 212-223 . Образец тангенциальный
390 550 17 64
Закалка в масло от 840-860 °C (выдержка 2,5-4,0 часа в зависимости от толщины и массы заготовки) с последующим отпуском на воздухе
≤30 200-220 1176-1274 1372 10 45 490 48.4-52.2
Закалка + Отпуск
500-800 395 615 11 30 390 187-229
Закалка в масло с 880 °С + отпуск
700 660 730 20 70 1960 220
Диски диаметром 755-915 мм, толщиной 35-110 мм. Втулка диаметром 115-400 мм НВ 212-223 . Образец тангенциальный
355 440 18 74
Закалка в масло с 850 °С + отпуск при 560 °С, охлаждение в воде или масле
≤25 835 930 12 45 765
Закалка + Отпуск
≤100 440 635 16 45 590 197-235
Диски диаметром 755-915 мм, толщиной 35-110 мм. Втулка диаметром 115-400 мм НВ 212-223 . Образец тангенциальный
335 400 18 75
Закалка в масло с 850-870 °С + отпуск при 180-200 °С, охлаждение на воздухе
50-80 640 810 40 579 260-322
Закалка + Отпуск
100-300 440 635 14 40 540 197-235
Закалка в масло с 880 °С + отпуск при 650 °С
770 880 22 66
Закалка в масло с 850-870 °С + отпуск при 560-620 °С, охлаждение на воздухе
80-120 590 780 40 579 229-285
Закалка + Отпуск
300-500 440 635 13 35 490 197-235
Закалка в масло с 880 °С + отпуск при 650 °С
570 730 23 71
Закалка в масло с 850-880 °C + отпуск при 585-650 °C
100-120 710 900 13 42 638
Закалка + Отпуск
≤100 490 655 16 45 590 212-248
Закалка в масло с 880 °С + отпуск при 650 °С
550 670 23 78
Закалка в масло с 850-880 °C + отпуск при 585-650 °C
120-150 600 800 14 45 638
Закалка + Отпуск
100-300 490 655 13 40 540 212-248
Закалка в масло с 880 °С + отпуск при 650 °С
490 550 22 86
Закалка в масло с 850-880 °C + отпуск при 585-650 °C
150-200 500 700 16 45 589
Закалка + Отпуск
≤100 590 735 14 45 590 235-277
Пруток. Нормализация 880 °С, Отпуск 650 °С, 2 ч. НВ 207
525 700 22 69
Закалка в масло с 850-880 °C + отпуск при 585-650 °C
100 750 950 13 42 638
Нормализация
300-500 245 470 17 35 340 143-179
Пруток. Нормализация 880 °С, Отпуск 650 °С, 2 ч. НВ 207
420 650 26 75
Нормализация
500-800 245 470 15 30 340 143-179
Пруток. Нормализация 880 °С, Отпуск 650 °С, 2 ч. НВ 207
400 540 24 80
Нормализация
100-300 275 530 17 38 340 156-197
Пруток. Нормализация 880 °С, Отпуск 650 °С, 2 ч. НВ 207
385 470 25 84
Нормализация
300-500 275 530 15 32 290 156-197
Пруток. Отжиг 860 °С. НВ 179
360 670 22 55
Нормализация
≤100 315 570 17 38 390 167-207
Пруток. Отжиг 860 °С. НВ 179
300 650 26 75
Нормализация
100-300 315 570 14 35 340 167-207
Пруток. Отжиг 860 °С. НВ 179
270 550 27 81
Нормализация
≤100 345 590 18 45 590 174-217
Пруток. Отжиг 860 °С. НВ 179
265 480 29 85

Ближайшие эквиваленты (аналоги) стали 12Х18Н10Т

США (ASTM/AISI) 321, 321H, S32100, S32109
Германия (DIN, WNr) 1.4541, 1.5878, X10CrNiTi18-10, X12CrNiTi18-9, X6CrNiTi18-10
Япония (JIS) SUS321
Франция (AFNOR) Z10CN18-10, Z10CN18-11, Z6CN18-10, Z6CNT18-12
Англия (BS) 321S31, 321S51, 321S59, LW18, LW24, X6CrNiTi18-10
Евронормы (EN) 1.4541, 1.4878, X10CrNiTi18-10, X6CrNiTi18-10KT
Италия (UNI) X6CrNiTI18-11, X6CrNiTi18-11KG, X6CrNiTi18-10KT
Испания (UNE) F.3523, X6CrNiTi18-10
Китай (GB) 0Cr19Ni10Ti, 0Cr18Ni11Ti, 0Cr18Ni9Ti, 1Cr18Ni11Ti, H0Cr20Ni10Ti
Швеция (SS) 2337
Болгария (BDS) 0Ch148N10T, Ch18N12T, Ch18N9T, X6CrNiTi18-10
Венгрия (MSZ) H5Ti, KO36Ti, KO37Ti, X6CrNi18-10
Польша (PN) 0H18N10T, 1H18N10T, 1H18N12T, 1H18N9T
Румыния (STAS) 10TiNiCr180, 12TiNiCr180
Чехия (CSN) 17246, 17247, 17248
Австрия (ONORM) X6CrNiTi18-10KKW, X6CrNiTi18-10S
Австралия (AS) 321
Южная Корея (KS) STS321, STS321TKA, STSF321
Россия (ГОСТ) 10Х14Г14Н4Т, Х14Г14Н3Т
Гость форума
От: admin

Эта тема закрыта для публикации ответов.