Содержание
- 13) Примеси в сталях. Влияние примесей на свойства сталей.
- Технология процесса азотирования
- Азотируемая сталь
- Типы сталей, подвергающихся азотации
- Разница между легированием и примесями
- Технологическая схема азотации
- Нитроцементация
- Виды легированных сталей
- Типы рабочих сред
- Виды стали, подходящие для азотизации
- Суть процесса азотирования
- Процесс легирования
13) Примеси в сталях. Влияние примесей на свойства сталей.
Св-ва углеродистых сталей определятся количеством углерода и содержанием примесей, которые взаимодействуют с железом и углеродрм. В сыросном содержании углерода в стали увеличивается процентное содержание цементита при снижении доли феррита, это приводит уменьшению пластичности и повышению твердости (прочности). Прочность повышается при процентном содержании около 1%, затем она уменьшается, потому что образуется грубая сетка Ц2. Увеличение содержания углерода снижает ударную вязкость,и повышается порог хладоломкости. Повышение содержания углерода ухудшает литейное свойство стали(до 0.4% сод. углерода), обрабатываемость давлением и резанием, свариваемость.
Влияние примесей:в сталях всегда присутствуют примеси, которые делятся на четыре группы:
постоянные: кремний, марганец, фосфор,сера. Марганец и кремний вводятся в процессе выплавки стали для раскисления, они называются технологическими примесями. Содержание марганца 0.5-0.8%, он повышает прочность не снижая пластичности. Содержание кремния 0.35-0.4%, он повышает плотность слитка, но снижает пластичность. Содержание фосфора 0.025-0.045%, он увеличивает прочность и предел текучести, и увеличивает температуру перехода в хрупкое состояние, увеличивает хладоемкость. Содержание серы 0.025-0.06%, она уменьшает пластичность, свариваемость и коррозионную стойкость(вредная примесь).
Скрытые примеси: газы: азот, кислород, водород подают в стали при выплавке, они находятся в стали в виде крупных неметаллических включений:окисловFeO и тд., и нитридов Fe2N и располагаются в дефектах, раковинах и трещинах(Al2O3, SiO2)
Очень вредным является растворенный в стали водород, он охрупчивает сталь и приводит к образованию в поковках флокены- тонкие трещины овальной или округлой формы в виде пятен серебристого цвета.
Специальные примеси вводятся в сталь для получения заданных свойств, и называются легирующими элементами, а стали – лигированные.
Назначение легирующих элементов:хром – основной лег. элемент(содержание 0.8- 1.2%), повышает прокаливаемость, способствует получению равномерной и высокой твердости стали. Порог хладоемкости хромистой стали до -100 градусов.Бор(сод. до 0.003%) увеличивает прокаливаемость, повышает порог хладоемкости до -60 градусов.Титан(до 0.1%) измельчает зерно хромомаргонцевойстали.Молибден(0.15-0.46%) увел. прокаливаемость, снижает хладоемкость до -120 градусов.Ванадий(0.1-0.3%) измельчает зерно, повышает прочность и вязкость.Никель(до 50%) повышает прочность, прокаливаемость, порог хладоемкости. Хромоникилевые стали имеют лучшие св-ва.
Классификация и маркировка сталей: 1) по химическому составу: углеродистые и легированные. 2) по содержанию углерода: низкоуглеродистые(до 0.25%), среднеуглеродистые (до 0.3-0.6%), высокоуглеродистые (больше 0.8%). 3) по равновесной структуре: доэфтектоидные, эфтектоидные(0.8%), заэфтектоидные. 4) по качеству : в зависимости от содаржания вредных примесей(S,P): обычного качества, качественные, высококачественные(S,P меньше 0.03%). 5) по способу выплавки: мартеновские печи, кислородно-корверторные печи, электропечи(электродуговые). 6) по назначению: конструкционные( изготовление деталей машин и др. деталей); инструментальные; специальные(с особыми свойствами).
Маркировка сталей:( принято буквенно-цифровое обозначение) 1) углеродистые стали обыкновенного качества ГОСТ 380. Ст2кп, БСт3кп, ВСт3пс.Ст- индекс стали; кп,пс,сп- степени раскисленности стали(кп- кипящая, пс- полуспокойная, сп- спокойная).С увеличением номера марки увеличивается прочность, и снижается пластичность группы: А,Б,В- свойства сталей.Качественно углеродистые стали маркируются двухзначным числом указывая среднее содержание углерода. Сталь 08 кп, сталь 10 пс.Инструментальные стали маркируются группой У и число указывающее содержание углерода в прцентах. У8-0,8%; У13-1.3%.
Легированные стали:Х-хром,N-никель,М-молибден,В-вольфрам,К-кобальт,А-азот,Г-марганец,Д-медь,Ф-ванадий, С-кремний,Т-титан,Р-фосфор,R-бор,Q-алюминий,Ц-цирконий. Сталь 12Х18Н10Т- нержавейка(1.2% углерода, 18% хлора, 10% никеля, титана меньше 1%)
Инструментальные легированные стали: Сталь 9ХСХВF- сод.углерода 0.9%;
Быстрорежущая сталь Р18, шарико-потшибниковая сталь ШХ6,сталь 15ГС.
Технология процесса азотирования
Во многом процесс азотирования стали превосходит другие методы, предусматривающие изменение химического состава металла. Технология азотирования деталей из стали обладает следующими особенностями:
- В большинстве случаев процедура проводится при температуре около 600 градусов Цельсия. Деталь помещается в герметичную муфельную печь из железа, которая помещается в печи.
- Рассматривая режимы азотирования, следует учитывать температуру и время выдержки. Для разных сталей эти показатели будут существенно отличаться. Также выбор зависит от того, каких эксплуатационных качеств нужно достигнуть.
- В созданный контейнер из металла проводится подача аммиака из баллона. Высокая температура приводит к тому, что аммиак начинает разлагаться, за счет чего начинают выделяться молекулы азота.
- Молекулы азота проникают в металл по причине прохождения процесса диффузии. Засчет этого на поверхности активно образуются нитриды, которые характеризуются повышенной устойчивостью к механическому воздействию.
- Процедура химико-термического воздействия в данном случае не предусматривает резкое охлаждение. Как правило, печь для азотирования охлаждается вместе с потоком аммиака и деталью, за счет чего поверхность не окисляется. Поэтому рассматриваемая технология подходит для изменения свойств деталей, которые уже прошли финишную обработку.
Цех ионно-вакуумного азотирования
Классический процесс получения требуемого изделия с проведением азотирования предусматривает несколько этапов:
- Подготовительная термическая обработка, которая заключается в закалке и отпуске. За счет перестроения атомной решетки при заданном режиме структура становится более вязкой, повышается прочность. Охлаждение может проходить в воде или масле, иной среде – все зависит от того, насколько качественным должно быть изделие.
- Далее выполняется механическая обработка для придания нужной форы и размеров.
- В некоторых случаях есть необходимость в защите определенных частей изделия. Защита проводится путем нанесения жидкого стекла или олова слоем толщиной около 0,015 мм. За счет этого на поверхности образуется защитная пленка.
- Выполняется азотирование стали по одной из наиболее подходящих методик.
- Проводятся работы по финишной механической обработке, снятию защитного слоя.
Режимы азотирования стали
Получаемый слой после азотирования, который представлен нитридом, составляет от 0,3 до 0,6 мм, за счет чего отпадает необходимость в проведении процедуры закаливания. Как ранее было отмечено, азотирование проводят относительно недавно, но сам процесс преобразования поверхностного слоя металла был уже практически полностью изучен, что позволило существенно повысить эффективность применяемой технологии.
Азотируемая сталь
Критический диаметр dKf ( мм при закалке улучшаемых сталей. |
Азотируемые стали являются разновидностью улучшаемых сталей. Они используются для изготовления коленчатых валов, шпинделей точных станков, гильз цилиндров, плунжеров топливных насосов, червяков и других деталей, которые должны иметь высокие сопротивление изнашиванию и предел выносливости. Высокие твердость и износостойкость азотированного слоя обеспечиваются благодаря образованию частиц нитридов, когерентно связанных с матричным ферритом. Необходимые свойства достигаются при азотировании легированных сталей, содержащих хром, алюминий и молибден, а также титан и ванадий.
Азотируемые стали имеют высокую износостойкость, твердость до HRC 68 и обеспечивают возможность получения точных размеров, так как чистовая механическая обработка выполняется после закалки и отпуска.
Азотируемая сталь, марки 38Х2Ю и 38Х2МЮА, позволяет получить азотированный слой с очень высокой твердостью. Сталь 38ХЮ склонна к отпускной хрупкости и поэтому применяется для мелких деталей приборостроения. Сталь 38Х2МЮА не склонна к отпускной хрупкости, применяется для ответственных деталей турбостроения, моторостроения.
Азотируемые стали 35ХМЮА и 35ХЮА применяют для изготовления сложных калибров и шаблонов, которые после закалки не представляется возможным шлифовать.
Азотируемые стали марок 38ХМЮА и 38ХЮ применяют для изготовления сложных калибров и шаблонов, которые после закалки не представляется возможным шлифовать.
У азотируемых сталей без алюминия твердость слоя меньше ( HRC — 50), но в результате азотирования возрастают усталостная прочность и сопротивление износу.
Применение азотируемых сталей значительно упрощает технологический процесс.
Использование азотируемой стали 38ХМЮА, несмотря на сложность обработки, целесообразно для таких инструментов, как кольца большого диаметра. В этом случае обеспечивается значительное уменьшение деформации и старения при возрастании износоустойчивости.
Для замены азотируемой стали с молибденом ( 38ХМЮА) разработаны безмолибденовые азотируемые стали 38XIOA — C, 38ХВФЮА — С и 38ХВЮА — С.
Возможно применение азотируемых сталей ( стали марок 38ХМЮА, 38ХЮА) для изготовления зубчатых колес. Азотирование меньше искажает форму зуба. Допустимые контактные напряжения после обеих обработок примерно одинаковы. Но толщина азотированного слоя ( 0 5 — 0 8 мм) меньше, чем цемен; тированного ( 0 8 — 1 мм), поэтому общую допустимую нагрузку у азотированных передач рекомендуется принимать меньше, чем у цементированных.
Червяки из азотируемых сталей ( 38Х2МЮА, 38Х2Ю и др.) не требуют шлифования витков, а только полируются. Для передач с колесами очень больших диаметров целесообразно червяки делать бронзовыми, а червячные колеса — чугунными.
В качестве азотируемых сталей применяют хромоалюминиевые или хромо-молибденовые улучшаемые стали с небольшим содержанием никеля и ванадия, которые особенно нужны при закалке азотированных сталей. Твердость поверхности сталей, легированных алюминием, достигает больше 900 единиц ( по Виккерсу), тогда как твердость поверхности стали с добавками хрома и молибдена составляет 750 при наивысшей твердости цементуемых хромомолибденовых сталей 700 единиц.
Для замены азотируемой стали с молибденом ( 38ХМЮА) разработаны безмолибденовые азотируемые стали 38ХЮА — С, 38ХВФЮА — С и 38ХВЮА — С.
Применяется в азотируемых сталях, не работающих при высоких температурах. Способствует процессу азотирования стали.
Типы сталей, подвергающихся азотации
При азотировании можно обрабатывать не только углеродистые стали, но также и легированные. Лучший результат при азотировании показывают сплавы, которые имеют в составе различные легирующие составляющие, формирующие термоустойчивые и твёрдые нитриды. К данным составляющим относят различные элементы, в том числе:
- молибден;
- алюминий;
- хром.
После процесса азотации стальные элементы обретают различную твердость. У углеродистых сталесплавов такой показатель равен 200-250, у легированных — 600-800.
Все легирующие компоненты, которые имеются в стали, повышают показатели твёрдости слоя, но также уменьшают его толщину. Несмотря на это азотация обеспечивает сохранность слоя в течение длительного времени. Больше всего на толщину слоя оказывают непосредственное влияние:
- вольфрам;
- молибден;
- хром;
- никель.
Также существуют и другие составляющие стали, но их влияние часто бывает настолько незначительным, что некоторыми показателями можно пренебречь. Прежде, чем игнорировать данные, необходимо тщательно изучить их влияние по отношению к определенному количеству стального сплава.
Марки стали для азотирования
Марки стали для азотации:
- 38Х2МЮА. Данный сталесплав после азотирования характеризуется очень высокой твердостью поверхностного слоя. Благодаря алюминию, который имеется в составе сталесплава, снижается деформационная стойкость готовых элементов и повышается твердость и износостойкость. Если из состава стали исключается алюминий, то в итоге возможно создавать стальные элементы с более сложной конфигурацией.
- 40Х, 40ХФА. Эти стали применяются исключительно для производства стальных деталей, использующихся при станкостроении. Характеристики сталелитейных изделий позволяют выдерживать им серьезную нагрузку, а также отличаться повышенной износостойкостью.
- 30Х3М, 38ХГМ, 38ХНМФА, 38ХН3МА. Применяются при изготовлении различных элементов, которые в процессе эксплуатации подвергаются нагрузкам на изгиб.
- 30Х3МФ1. Эта сталь используется в изделиях, которым предъявляется высокая точность в геометрических параметрах. Для придания повышенной твердости в данный сплав также могут добавлять кремний. Это актуально при изготовлении деталей для топливного оборудования.
Разница между легированием и примесями
Обычные легирующие добавки — это компоненты, которые вводят в металл в значительных количествах — более 0,10%. Они вызывают изменение кристаллической решётки железа, образуя растворы внедрения, повышают прочностные и других свойства железа (матрицы).
В качестве металлов для легирования используют:
- хром Cr;
- марганец Mn;
- никель Ni;
- алюминий Al;
- молибден Mo;
- кобальт Co;
- титан Ti;
- цирконий Zr;
- медь Cu и другие.
Их внедряют в сталь в разных количествах и сочетаниях.
Примеси
Существует деление вредных примесей на обычные и остаточные. К обычным вредным примесям относят те, содержание которых в металле можно уменьшить во время плавки – это фосфор, сера, кислород, азот, углерод, т. е., неметаллы.
Под остаточными вредными примесями принято понимать такие, содержание которых невозможно снизить во время плавки ни при окислительном рафинировании, ни при обычном легировании. Это характерно для химических элементов, имеющих растворимость в жидком железе. В производственной практике обычно встречающимися вредными остаточными примесями являются:
- медь;
- никель;
- олово;
- сурьма;
- мышьяк.
Технологическая схема азотации
Хоть азотация может выполняться различными способами, но схема подготовки материалов и технологических операций практически идентична. Существует несколько вариантов азотирования:
- газовое;
- инновационное плазменное;
- ионное.
Несмотря на разновидность азотирования металла результат обработки направлен на получение максимально прочного и износостойкого изделия.
Подготовительная термообработка
Данный вид обработки состоит из закалки изделия и его высоком отпуске. Закаливание стального элемента выполняется в температурном режиме выше 940 градусов. Охлаждение при подготовительной обработке производится исключительно в масле либо воде. После закалки металла при температуре 940 градусов происходит отпуск при 600-700 градусах. Обрабатываемая стальная деталь наделяется повышенной твердостью.
Механическая обработка
Операция заключается в шлифовке готовой детали. Точная геометрия деталей является залогом приобретения необходимых прочностных свойств и длительной эксплуатации её в дальнейшем.
Защита частей деталей, не подвергающихся азотации
Данный этап обработки стали необходим для защиты элементов, которые не должны азотироваться. Для защиты используется олово или жидкое стекло, которое наносится на поверхность металлической детали тонким слоем не более 0,015 мм. Технология электролиза для закрепления данных материалов обеспечивает его надежное крепление на поверхности сталесплава, а также высокую устойчивость к азотистой среде, поэтому вещество не проникает во внутреннюю структуру стальной детали.
Азотирование
Для разных марок стали нужна определенная температура нагрева. При этой температуре сталь выдерживают в течение определенного количества часов. Благодаря данным параметрам формируется слой на различной глубине, обеспечивающем определенную номинальную твердость поверхности. Для стали марки 7ХЗ температура нагрева составляет 500-520 градусов. Выдержка стали происходит в течение 48-60 часов, обеспечивается глубина слоя 0,4-0,5 мм, а номинальная твердость поверхности составляет 1000-1100.
Итоговая обработка
Данный этап обработки стали позволяет довести геометрические и механические параметры стального элемента до необходимого значения. Так как во время азотирования изменения геометрии весьма незначительно, то на финише изменения будут минимальными. Несмотря на то, что деталь подвергается минимальной температурной обработке, всё же придётся несколько доработать элементы, так как азотистый слой может несколько влиять на геометрию. Для того чтобы избежать какой-либо деформации в процессе азотации элемента, можно использовать более совершенную технологию — ионное азотирование. Технологический процесс ионно-плазменной азотации предполагает минимальные показатели воздействия температурных режимов на детали из стали, вероятность деформирования стали стремится к минимуму.
Ионно-плазменное азотирование зарекомендовало исключительно с положительной стороны. Среди плюсов стоит подчеркнуть, что азотация происходит при пониженных температурах, в отличие от традиционных вариантов. Для того чтобы осуществить ионно-плазменную азотацию, чаще всего используют сменный муфель либо вмонтированную деталь установки. Данные элементы обеспечивают ускорение процесса совершенствования металла, но не во всех случаях экономически оправданы.
Нитроцементация
Процесс одновременного насыщения стали углеродом и азотом в газовой среде называется нитроцементацией. Нитроцементацию проводят при более низких температурах (850 – 870 0 С) по сравнению с цементацией. Это обусловлено тем, что азот проникая в сталь одновременно с углеродом, понижает температуру существования твердого раствора на основе γ-железа и тем самым способствует науглероживанию стали при более низких температурах. Понижение температуры насыщения без увеличения длительности процесса позволяет снизить деформацию обрабатываемых деталей, уменьшить нагрев печного оборудования. Для газовой цементации и нитроцементации применяют практически одинаковое оборудование.
Для нитроцементации рекомендуется использовать контролируемую эндотермическую атмосферу, к которой добавляют 3 – 15 % неотработанного природного газа и 2 – 10 % NН3 или в случае шахтной печи – жидкий карбюризатор – триэтаноламин (С2Н5О)3N, который в виде капель вводят в рабочее пространство.
Нитроцементации обычно подвергают легированные стали с содержанием до 0,25% С. Продолжительность процесса 4-10 ч. Толщина нитроцементованного слоя составляет 0,2–0,8 мм. После нитроцементации следует закалка, либо непосредственно из печи с подстуживанием до 800 – 825 0 С, либо после повторного нагрева; применяют и ступенчатую закалку. После закалки проводят отпуск при 160 – 180 0 С.
При оптимальных условиях насыщения структура нитроцентируемого слоя должна состоять из мелкокристаллического мартенсита, небольшого количества мелких равномерно распределенных карбонитридов и 25 – 30 % остаточного аустенита.
Твердость слоя после закалки и низкого отпуска составляет 58 – 64 HRC (5700 – 6900 HV). Высокое содержание остаточного аустенита обеспечивает хорошую прирабатываемость например, не шлифуемых автомобильных шестерен, что обеспечивает их бесшумность. Максимальные показатели прочности достигаются только при оптимальном для данной стали содержании на поверхности нитроцементируемого слоя углерода и азота.
В последние годы получил применение процесс низкотемпературной нитроцементации.
Низкотемпературную нитроцементацию проводят при 570 0 С в течение 0,5 – 3,0 час в атмосфере, содержащей 50 % эндогаза (экзогаза) и 50 % аммиака или 50 % пропана (метана) и 50 % аммиака. В результате такой обработки на поверхности стали образуется тонкий карбонитридный слой Fe3(N, C), обладающий высокой износостойкостью. Твердость такого слоя на легированных сталях составляет 5000 – 10000 HV. Низкотемпературная нитроцементация повышает предел выносливости изделий. Процесс рекомендован для замены жидкого азотирования в расплавленных цианистых солях.
Все эти виды упрочняющей термической обработки имеют свою специфику и особенности и, как правило, используются в различных технологических операциях при термической обработке сталей и сплавов.
Виды легированных сталей
Стали имеют определённую классификацию в зависимости от структуры и области применения.
По структуре делятся на классы:
- мартенситный (основная структура металла),
- мартенситно-ферритный (структура содержит мартенсит + 10% феррита),
- ферритный,
- аустенитно-мартенситный (стали с комбинированной структурой аустенита и мартенсита, количество которых можно менять в больших пределах),
- аустенитно-ферритный (структура: аустенит с содержанием феррита более 10%),
- аустенитный (устойчивая структура аустенита).
По процентному соотношению легирующих добавок сталь подразделяют на:
- низколегированную – 5–10%,
- среднелегированную – 10%,
- высоколегированную – более 10%.
Типы рабочих сред
Для выполнения азотирования могут использоваться различные типы рабочих сред. Наиболее распространенной из них является газовая среда, состоящая на 50% из аммиака и на 50% из пропана или из аммиака и эндогаза, взятых в таких же пропорциях. Процесс азотирования в такой среде выполняется при температуре 570°. При этом изделие подвергается воздействию газовой среды на протяжении 3 часов. Азотированный слой, создаваемый при использовании такой рабочей среды, имеет небольшую толщину, но высокую прочность и износостойкость.
Большое распространение в последнее время получает метод ионно-плазменного азотирования, выполняемого в азотосодержащей разряженной среде.
Ионно-плазменное азотирования – взгляд «изнутри»
Отличительной особенностью ионно-плазменного азотирования, которое также называют обработкой при тлеющем разряде, является то, что обрабатываемую деталь и муфель подключают к источнику электрического тока, при этом изделие выступает в качестве отрицательно заряженного электрода, а муфель – в роли положительно заряженного. В результате между деталью и муфелем формируется поток ионов – своего рода плазма, состоящая из N2 или NH3, за счет которой происходят и нагрев обрабатываемой поверхности, и ее насыщение необходимым количеством азота.
. . . Азотирование
— это термохимическое упрочение поверхности стальных и чугунных деталей, при которой насыщают азотом. Поверхностный слой изделия, насыщенный азотом, имеет в своём составе растворённые нитриды и получает крайне высокую микротвёрдость, значительную устойчивость к коррозии и улучшенные триботехнические свойства (уменьшение коэффициента трения). По уровню получаемой микротвёрдости азотирование превосходит цементацию и нитроцементацию. Так же — детали подвергнутые азотированию держат свою повышенную прочность при нагреве до температуры 550–600°С. Для сравнения- после цементации твердость поверхностного слоя может начать ухудшаться при нагреве детали уже свыше 225°С. В итоге можно четко констатировать — что прочностные характеристики поверхностного слоя стали после азотирования в 1,5–2 раза выше, чем после закалки или цементации. Именно поэтому уже более 60 лет такие ответственные и подвергаемые жесткому нагреву детали ДВС как впускные и выпускные тарельчатые клапана обязательно подвергают азотированию.
. . Другой важной чертой процесса азотирования стали является то, что при этом процессе детали нагревают лишь до 500-550°С. Такой достаточно щадящий процесс термического воздействия приводит к тому, что в даталях практически не возникает термических напряжений и последующих деформаций. Именно поэтому азотированию можно подвергать детали уже изготовленные «точно в размер». В отличие от азотирования, процессы цементирования или закалки предполагают нагрев до 850-950 °С, что приводит к серьезным последующим поводкам деталей (изменению их геометрии за счет появления внутренних напряжений) и необходимости далее шлифовать такие изделия. А шлифовать термоупроченные детали с высокой поверхностной твердостью- дело очень трудоемкое и дорогое….
Особенно такой щадящий режим термовоздействия на азотируемые детали характерен для передовой методики ионно-плазменного азотирования, где нагрев идет более щадящий, чем при азотировании в газовой среде аммиака.
Поверхностная твердость обработанных сталей типа 38Х2МЮА достигает величины в 63-65 HRC (твердость по Роквеллу), стали 40Х- до 50-52 HRC .
Глубина возникающего поверхностного термоупроченного слоя составляет от 0,2 до 0,6 мм в зависимости от типа стали.
Детали после процесса азотирования. Цвет изменился- нитриды железа обладают специфическим цветом.
КАКИЕ ДЕТАЛИ ПОДВЕРГАЮТ АЗОТИРОВАНИЮ?
. . . Азотированию подвергают прежде всего такие детали различных машин и механизмов, которые подвергаются повышенному износу за счет усиленного трения в условиях значительных температур.
ШНЕКОВЫЕ ПАРЫ:
… Например — шнеки и филеры (пилотезы) шнековых прессов для выдавливания с дальнейшим формованием пластиковых изделий, либо шнеков при производстве евродров из опилок-цепы, либо шнековых прессов для отжима растительного масла, и прочих похожих шнековых прессов. Например — большая технологическая проблема шнеков для формовки и прессования евродров из цепы и опила — это очень быстрый износ формующей пары «оконечник шнека- фильера». Особенно- если формовке подвергается щепа с лесосеки, загрязненная песком, глиной и почвой, то поверхности формующей пары дешевых шнековых прессов изнашиваются за 4-6 дней, а «фирменных» прессов держатся не более месяца… После этого шнек практически уже не может выдавать продукт нормального качества и нужной геометрии…
Виды стали, подходящие для азотизации
Для обогащения азотом подходят разные виды стали – как легированные, так и углеродистые. С первым типом процесс эффективнее. Особенно, если в составе есть легирующие элементы, способные формировать термостойкие нитриды (хром, молибден, алюминий и прочие). При остывании подобные сплавы – нитролои – не будут становиться хрупкими, а после их твердость значительно увеличивается.
Насколько твердыми будут разные виды стальных сплавов в результате обработки азотом:
- нитролои – до 1200 HV;
- легированные – до 800 HV;
- углеродистые – до 250 HV.
Нужно учитывать и марку стали, которая указывает, для чего предназначено изделие.
Как маркируют сталь, наиболее подходящую для азотирования:
Марка | Использование | Технологические данные | Максимальные параметры слоя | ||
Твердость сердцевины (HRC) | Максимальная температура (˚С) | Глубина (мм) | Поверхностная твердость (HV) | ||
Горячая обработка металла | |||||
4Х5МФС | Пресс-формы, молотовые штампы, прессовые вставки | 35–55 | 560 | 0,3 | 1100 |
3Н3М3Ф | Формы литья под давлением, ударно-штамповой, мерный, режущий инструмент | 35–51 | 560 | 0,3 | 1100 |
5ХНМ | Штампы горячего деформирования | 36–44 | 550 | 0,3 | 760 |
3Х2В8 | Прессовое тяжело нагруженное оборудование | 35–50 | 560 | 0,25 | 1100 |
Холодная обработка металла | |||||
Х12 | Холодные штампы | 50–55 | 520 | 0,2 | 1100 |
Х12М | Накатные ролики, волочильные доски, глазки калибрования, матрицы, пуансоны | 53–60 | 520 | 0,2 | 1200 |
Х12МФ | Ножи, клинки | 56–58 | 480 | 0,2 | 1300 |
Х12Ф1 | Инструмент с тонкой режущей кромкой | 52–60 | 550 | 0,2 | 1250 |
Благодаря термостойким нитридам сталь станет тверже, но толщина азотонасыщенного слоя уменьшится.
Суть процесса азотирования
По сравнению с цементацией азотирование имеет несколько веских преимуществ, которое сделало его основным способом улучшения показателей стали. Азотированный слой обладает высоким показателем твердости без дополнительной термообработки. Кроме того, после азотирования размер обрабатываемой детали остается практически неизменным. В отличие от цементационного процесса, его можно применить к готовым изделиям, которые прошли термическую закалку с высоким отпуском и отшлифованы до окончательных форм. После азотирования детали полностью готовы к чистовой полировке и другой обработке.
Азотирование – это обработка стали в процессе ее нагрева в среде высокого содержания аммиака. Вследствие этого поверхность стали насыщается азотом и приобретает следующие качества:
- Улучшается износостойкость деталей из металла за счет повышения индекса твердости их поверхностного слоя;
- Растет выносливость или усталостной прочности стальных изделий;
- Обработанный материал приобретает стойкую антикоррозионную защиту, которая сохраняется при контакте с водой, воздухом и паровоздушной средой.
Результаты азотирования намного ценнее в плане дальнейшей эксплуатации, нежели показатели изделия после цементации. Так, слой после цементации может сохранять стабильные показатели твердости при температуре не более 225 °С, а слой с азотом – до 550-600 °С. Причиной тому служит сам механизм азотирования, вследствие которого образуется поверхностный слой, который в 1,5-2 раза прочнее, чем после закалки и той же цементации.
Механизм азотирования
Обычно эта процедуры происходит при 500-600 °С в герметично закрытой реторте (муфели) из железа, которая внедряется в печь. Ее разогревают до температуры соответствующей выбранному режиму, и выдерживается необходимое время. В муфел, который являет собой контейнер, закладывают стальные элементы, которые будут подвержены азотированию. В реторту из баллона непрерывно под определенным давлением запускается аммиак. Внутри нее аммиак, имеющий в своей молекуле азот, под действием температуры начинает диссоциацию (разложение) по следующей формуле:
2 NH 3 →6 H +2 N ,
откуда полученный в результате этого разложения атомарный азот проникает в металл путем диффузии. Это приводит к образованию нитридов на поверхности железных изделий. А нитриды и их твердые растворы характеризуются повышенной твердостью. По окончании процедуры печь должна плавно охлаждается вместе с потоком аммиака. Такой подход закрепляет эффект по твердости слоя, не давая поверхности окислиться.
Толщина такого нитридного слоя может варьировать от 0,3 до 0,6 мм. Таким образом, отпадает надобность в последующей термической обработке с целью повышения прочностных характеристик.
Схема формирования слоя, обогащенного азотом сложна, но хорошо изучена металлургами. В сплаве, который образуется вследствие диффузии азота в металл, наблюдается возникновение следующих фаз:
- Твердый раствор Fe3N с долей азота 8,0-11,2%;
- Твердый раствор Fe4N с долей азота 5,7-6,1%;
- Раствор N в α-железе.
При доведении процесса до температуры, которая превышает 591 °С можно наблюдать дополнительную α- фазу. Когда она достигает лимита насыщения, это порождает следующую фазу. Эвтектоидный распад производит 2,35 % азота.
Факторы, влияющие на азотирование
Основными моментами, оказывающими ключевое влияние на процесс, являются температурный режим, давление газа и пролонгированность азотирования. Эффективность также зависит от степени диссоциации аммиака, которая может быть в районе 15-45%. Причем существует определенная зависимость: чем выше температура, тем ниже твердость слоя азотирования, но выше скорость диффузии. Показатель твердости вызван коагуляцией нитридов. Для того чтобы использовать механизм по максимуму и ускорить его, прибегают к двухэтапному режиму. Начальная стадия обогащения азотом проходит при температурах до 525 °С, что обеспечивает верхним слоям стали высокую твердость. Затем азотирование проходит вторую ступень при температурном режиме от 600°С до 620 °С. При этом в очень короткое время глубина азотированного слоя доходит до заданных значений, ускоряя весь процесс почти в 2 раза. Однако, твердость образованного в результате ускорительного этапа слоя ничем не будет отличаться от слоя, который сформирован по стандартной одноступенчатой методике.
Процесс легирования
Основным способом легировать сталь является метод объёмного металлургического легирования. Заключается в сплавлении основного элемента с легирующими в печах разного вида (индукционные, вакуумно-дуговые, тигельные, конвертеры, дуговые, плазменные, и др.). При этом способе возможна существенная потеря активных веществ (марганца, хрома, молибдена, и др.).
Существуют также:
- механическое легирование;
- восстановление;
- электролиз;
- плазмохимическая реакция.
Механическое легирование выполняют в аттриторах – барабанах, в центре которых находится вал с кулачками. В них закладывают порошкообразные компоненты для получения нужного сплава. Во время вращения кулачки «ударяют» по смеси, и происходит «вбивание» легирующих добавок в основу.
При совместном восстановлении перемешивают оксиды элементов сплава с восстановителем, например, с гидридом кальция (СаН2) и производят нагрев. Идёт реакция восстановления оксидов до металлов, синхронно происходит процесс диффузии, выравнивающий состав сплава. Полученный оксид кальция (СаО) промывают водой, а сплав (в виде порошка) идёт в следующую обработку. Металлотермическое восстановление подразумевает использование металлов (магния, кальция, алюминия и др.) в качестве восстановителей.

Эта тема закрыта для публикации ответов.