Древние металлы создавшие цивилизацию

Алан-э-Дейл       11.06.2022 г.

Внутреннее строение и физические свойства металлов

Металлы — это простые вещества, атомы которых могут только отдавать электроны. Такая особенность металлов связана с тем, что на внешнем уровне этих атомов мало электронов (чаще всего от 1 до 3) или внешние электроны расположены далеко от ядра. Чем меньше электронов на внешнем уровне атома и чем дальше они расположены от ядра, — тем активнее металл (ярче выражены его металлические свойства).

Задание 8.1. Какой металл активнее:

Назовите химические элементы А, Б, В, Г.

Металлы и неметаллы в Периодической системе химических элементов Менделеева (ПСМ) разделяет линия, проведённая от бора к астату. Выше этой линии в главных подгруппах находятся неметаллы (см. урок 3). Остальные химические элементы — металлы.

Задание 8.2. Какие из следующих элементов относятся к металлам: кремний, свинец, сурьма, мышьяк, селен, хром, полоний?

Вопрос. Как можно объяснить тот факт, что кремний — неметалл, а свинец — металл, хотя число внешних электронов у них одинаково?

Существенной особенностью атомов металлов является их большой радиус и наличие слабо связанных с ядром валентных электронов. Для таких атомов величина энергии ионизации* невелика.

Часть валентных электронов металлов, отрываясь от атомов, становятся «свободными». «Свободные» электроны легко перемещаются между атомами и ионами металлов в кристалле, образуя «электронный газ» (рис. 28).

В последующий момент времени любой из «свободных» электронов может притянуться любым катионом, а любой атом металла может отдать электрон и превратиться в ион (эти процессы показаны на рис. 28 пунктирами).

Таким образом, внутреннее строение металла похоже на слоёный пирог, где положительно заряженные «слои» атомов и ионов металла чередуются с электронными «прослойками» и притягиваются к ним. Наилучшей моделью внутреннего строения металла является стопка стеклянных пластинок, смоченных водой: оторвать одну пластинку от другой очень трудно (металлы прочные), а сдвинуть одну пластинку относительно другой очень легко (металлы пластичные) (рис. 29).

Задание 8.3. Сделайте такую «модель» металла и убедитесь в этих свойствах.

Химическая связь, осуществляемая за счёт «свободных» электронов, называется металлической связью.

«Свободные» электроны обеспечивают также такие физические свойства металлов, как электро- и теплопроводность, пластичность (ковкость), а также металлический блеск.

Задание 8.4. Найдите дома металлические предметы.

Выполняя это задание, вы легко найдёте на кухне металлическую посуду: кастрюли, сковородки, вилки, ложки. Из металлов и их сплавов делают станки, самолёты, автомобили, тепловозы, инструменты. Без металлов невозможна современная цивилизация, так как электрические провода также делают из металлов — Cu и Al. Только металлы годятся для получения антенн для радио- и телеприёмников, из металлов делают и лучшие зеркала. При этом чаще используют не чистые металлы, а их смеси (твёрдые растворы) — СПЛАВЫ.

Черные металлы

Три главные особенности черных металлов: большая плотность, высокая температура плавления и темная окраска. Так как с черными металлами в чистом виде тяжело работать, в них добавляют легирующие компоненты — примеси для изменения физических и химических свойств основного материала.

Чтобы придать черным металлам форму, их сначала нагревают до высоких температур, а потом прессуют

Черные металлы делятся на 5 подгрупп:

Железные металлы

К ним относятся кобальт, никель и марганец. Они применяются как добавки к железу — чаще всего, из сплавов получают прочную сталь, которая используется в изготовлении различных деталей для крупной техники, ножей и других изделий.

Из стали изготавливаются прочные и красивые ножи причем не только кухонные

Тугоплавкие металлы

К этой подгруппе относятся ниобий, молибден, вольфрам и рений. Их общей чертой является то, что ох температура плавления выше, чем у железа — то есть, составляет более 1539 градусов Цельсия. Из них, как правило, изготавливают детали для техники и нити накаливания для различных лампочек.

Нити накаливания в лампочках, как правило, сделаны из вольфрама

Урановые металлы

В эту группу входят уран, калифорний и другие радиоактивные металлы. Они используются исключительно в отрасли атомной энергетики.

В древние времена уран использовался для изготовления желтой посуды

Редкоземельные металлы

В эту классификацию входят лаптан, празеодим, неодим и другие металлы. Все они серебристо-белого цвета и имеют практически полностью одинаковые химические свойства. Свое название редкоземельные материалы получили потому, что их трудно найти в земной коре. Они используются в атомной энергетике и машиностроении. Например, из редкоземельных металлов можно создавать стекла, которые не пропускают через себя ультрафиолетовые лучи.

Редкоземельный элемент скандий используется в ртутно-газовых лампах

Щелочноземельные металлы

В эту подгруппу входят бериллий, магний, кальций, радий и другие металлы. Все они окрашены природой в серый цвет и при комнатной температуре всегда остаются в твердом состоянии. В чистом виде они практически нигде не применяются, за исключением атомных реакторов.

Щелочноземельный элемент бериллий используют для изготовления рентгеновских трубок, через которые лучи выходят наружу

Достоинства и недостатки

Преимущества:

Серебряные украшения подходят под любую одежду. Этого нельзя сказать о золоте. Золотые изделия могут испортить внешний вид человека

Оно часто затмевает вид одежды, привлекая повышенное внимание.
Золотые украшения принято надевать на большие празднования, церемонии. Серебро же подойдет на любой праздник, деловую встречу, собеседование.
Серебряные украшения подходят и мужчинам, и женщинам

Преобладающих факторов по гендерному различию нет.
Долговечность, прочность, износоустойчивость.

Серьезных недостатков у этого металла нет за исключением того, что со временем он темнеет.

Свойства и характеристики

Бериллий имеет уникальные свойства, которые выделяют его среди других металлов. От них зависят сферы применения материала.

Физические

Свойства:

  1. Номер в периодической таблице Менделеева — 4.
  2. Твердость по шкале Мооса — 5,5 баллов.
  3. Модуль упругости — 300 Гпа.
  4. Показатель плотности — 1844 кг/м3.
  5. Температура плавления — 1287°C.
  6. Показатель теплоемкости — 1,80 кДж/кг • К.
  7. Конфигурация внутренней решетки — гексагональная, кубическая, объемноцентрированная.
  8. Теплопроводность — 178 Вт/м • К при 50°С.
  9. Температура кипения — 2507°C.
  10. Удельное электрическое сопротивление — (3,6-4,5) • 10 Ом • м при 20°С.
  11. Ударная вязкость — 10-50 кДж/м2.

Чистый бериллий (Фото: Instagram / chemistry_easy)

Химические

Химические свойства металла:

  1. Валентность — 2.
  2. Реагирует с галогенами при высоких температурах.
  3. Не вступает в реакции с водородом.
  4. Взаимодействует с щелочами, кислотами.

Механические

Механические свойства этого металла зависят от наличия сторонних примесей, легирующих добавок, методов обработки, которые применялись при его получении, величины зерен.

Свойства:

  1. Максимальный предел прочности на вытяжку — 400–800Мн/м2.
  2. Предел текучести — 250–600 Мн/м2.
  3. Относительное удлинение — до 12%.

Оксид бериллия (Фото: Instagram / bvballiance)

Вторая половина XIX века и современность

К середине XIX века пудлинговые печи перестали удовлетворять потребности промышленности. Многие ученые начали работать над вопросом замены технологии получения стали. Первым решить задачу удалось учёному из английского города Шеффилд Гарри Бреарли. Его называют первооткрывателем «нержавеющей стали» и человеком, который заменил пудлинговую печь на доменную (сквозь массу бедного фосфором чугуна продувался сжатый воздух, который способствовал процессам окисления). В 1913 году он запатентовал самый первый вариант мартенситной стали. Именно она стала предшественником современной стали под маркой AISI 420. В 1878 г. Сидни Гилкристу Томасу удалось изобрести «томасовский процесс» для удаления фосфорных примесей из железной руды в процессе плавки. Несмотря на это, первым ученым, кто задокументировал все положительные химические свойства нержавеющей стали, принято считать французского учёного и изобретателя Леона Джиллета.

В 1912 году Эдуард Маурэр и Бенно Штраус из немецкой компании «Krupp Iron Works» запатентовали первую аустенитную сталь, которая содержит 7% никеля и 21% хрома. Через 10 лет, в 1924 году,  Хартфилд (преемник Бреарли) запатентовал нержавеющую сталь под маркой 18-8 (18% хрома и 8% никеля). В это время появились кислородные конвертеры и электрические печи для выплавки стали.

В 1952 г.году в Австрии заработал первый в мире сталелитейный завод на основе ЛД-процесса, который заключался в удалении из чугуна примесей в конвертере продувкой техническим кислородом.Менее чем за столетие нержавеющая сталь стала самым востребованным материалом промышленного производства. Сегодня существует около 100 типов нержавеющей стали с процентным содержанием хрома больше десяти. Из этого материала изготовляют корпуса самолетов и поездов, мелкую бытовую технику и приборы, медицинскую технику и т.д.

Физические свойства металлов

Твёрдость

Все металлы (кроме ртути и, условно, франция) при нормальных условиях находятся в твёрдом состоянии, однако обладают различной твёрдостью. Ниже в таблице приводится твёрдость некоторых металлов по шкале Мооса.

Твёрдость некоторых металлов по шкале Мооса:
Твёрдость Металл
0.2 Цезий
0.3 Рубидий
0.4 Калий
0.5 Натрий
0.6 Литий
1.2 Индий
1.2 Таллий
1.25 Барий
1.5 Стронций
1.5 Галлий
1.5 Олово
1.5 Свинец
1.5 Ртуть(тв.)
1.75 Кальций
2.0 Кадмий
2.25 Висмут
2.5 Магний
2.5 Цинк
2.5 Лантан
2.5 Серебро
2.5 Золото
2.59 Иттрий
2.75 Алюминий
3.0 Медь
3.0 Сурьма
3.0 Торий
3.17 Скандий
3.5 Платина
3.75 Кобальт
3.75 Палладий
3.75 Цирконий
4.0 Железо
4.0 Никель
4.0 Гафний
4.0 Марганец
4.5 Ванадий
4.5 Молибден
4.5 Родий
4.5 Титан
4.75 Ниобий
5.0 Иридий
5.0 Рутений
5.0 Тантал
5.0 Технеций
5.0 Хром
5.5 Бериллий
5.5 Осмий
5.5 Рений
6.0 Вольфрам
6.0 β-Уран

Температура плавления

Температуры плавления чистых металлов лежат в диапазоне от −39 °C (ртуть) до 3410 °C (вольфрам). Температура плавления большинства металлов (за исключением щелочных) высока, однако некоторые металлы, например, олово и свинец, могут расплавиться на обычной электрической или газовой плите.

Плотность

В зависимости от плотности, металлы делят на лёгкие (плотность 0,53 ÷ 5 г/см³) и тяжёлые (5 ÷ 22,5 г/см³). Самым лёгким металлом является литий (плотность 0,53 г/см³). Самый тяжёлый металл в настоящее время назвать невозможно, так как плотности осмия и иридия — двух самых тяжёлых металлов — почти равны (около 22,6 г/см³ — ровно в два раза выше плотности свинца), а вычислить их точную плотность крайне сложно: для этого нужно полностью очистить металлы, ведь любые примеси снижают их плотность.

Пластичность

Большинство металлов пластичны, то есть металлическую проволоку можно согнуть, и она не сломается. Это происходит из-за смещения слоёв атомов металлов без разрыва связи между ними. Самыми пластичными являются золото, серебро и медь. Из золота можно изготовить фольгу толщиной 0,003 мм, которую используют для золочения изделий. Однако не все металлы пластичны. Проволока из цинка или олова хрустит при сгибании; марганец и висмут при деформации вообще почти не сгибаются, а сразу ломаются. Пластичность зависит и от чистоты металла; так, очень чистый хром весьма пластичен, но, загрязнённый даже незначительными примесями, становится хрупким и более твёрдым. Некоторые металлы, такие, как золото, серебро, свинец, алюминий, осмий, могут срастаться между собой, но на это могут уйти десятки лет.

Электропроводность

Все металлы хорошо проводят электрический ток; это обусловлено наличием в их кристаллических решётках подвижных электронов, перемещающихся под действием электрического поля. Серебро, медь и алюминий имеют наибольшую электропроводность; по этой причине последние два металла чаще всего используют в качестве материала для проводов. Очень высокую электропроводность имеет также натрий, в экспериментальной аппаратуре известны попытки применения натриевых токопроводов в форме тонкостенных труб из нержавеющей стали, заполненных натрием. Благодаря малому удельному весу натрия, при равном сопротивлении натриевые «провода» получаются значительно легче медных и даже несколько легче алюминиевых.

Теплопроводность

Высокая теплопроводность металлов также зависит от подвижности свободных электронов. Поэтому ряд теплопроводностей похож на ряд электропроводностей, и лучшим проводником тепла, как и электричества, является серебро. Натрий также находит применение как хороший проводник тепла; широко известно, например, применение натрия в клапанах автомобильных двигателей для улучшения их охлаждения.

Наименьшая теплопроводность — у висмута и ртути.

Цвет

Цвет у большинства металлов примерно одинаковый — светло-серый с голубоватым оттенком. Золото, медь и цезий соответственно жёлтого, красного и светло-жёлтого цвета.

Элементы: медь — первый металл, освоенный человеком

Дата: 18.09.2019

Подобно золоту и серебру, медь в земной коре иногда встречается в виде самородков. Возможно, из них около 10 тысяч лет назад были изготовлены первые металлические орудия труда. Распространению меди способствовали такие ее свойства, как способность к холодной ковке и простота выплавки из богатых руд. На Кипре уже в 3 тысячелетии до нашей эры существовали медные рудники и производилась выплавка меди. Отсюда происходит и латинское название меди – сuprum. На территории России медные рудники появились за два тысячелетия до н. э. Их остатки находят на Урале, Кавказе, Сибири. В трудах древнегреческого историка Страбона медь называется халкосом, от названия города Халкиды. От этого слова произошли многие термины в геохимии и минералогии, например — халькофильные элементы, халькопирит. Русское слово медь встречается в самых древних литературных памятниках и не имеет чёткой этимологии. Некоторые исследователи отсылают происхождение термина к названию древнего государства Мидия, располагавшегося на территории современного Ирана.

Простое вещество медь — пластичный металл золотисто-розового цвета. В Таблице Менделеева занимает клетку № 29 (символ Cu) с атомной массой 63, 55 а.е.м.   

Среднее содержание (кларк) меди в земной коре – 70 г/т и встречается как в соединениях, так и в самородном виде. Основные промышленные медные руды: халькопирит (медный колчедан) CuFeS2, халькозин Cu2S и борнит Cu5FeS4.


Медь самородная 31х21х17 мм, озеро Верхнее, США.


Кристалл халькопирита 4х5х4 см. Николаевский рудник, Приморский край.

По данным за 2016 год мировым лидером по запасам меди является Чили с долей 34%, второе и третье места делят США и Перу – по 9%, четвертое место Австралия – 6%, пятое – Россия с долей 5%. Остальные страны менее 5%.


Запасы медных руд на 2016 год

Крупнейшей медедобывающей страной является Чили. На её территории находится самое крупное в мире месторождение меди Чукикамата (исп. Chuquicamata) на котором добывают медную руду открытым способом с 1915 года. Карьер расположен в центральных Андах на высоте 2840 м и в настоящее время является самым большим по размерам карьером в мире: длина — 4,3 км, ширина — 3 км, глубина — 850 м.


Карьер Чукикамата, Чили.

Медь широко применяется в электротехнике для изготовления силовых и других кабелей, проводов и других проводников. На 2011 год стоимость меди составляла около $9000 за тонну. Вследствие кризиса мировой экономики цена на большинство видов сырья упала, и стоимость 1 тонны меди на 2016 год не превышала $4700.

Что выяснили ученые?

Несколько дней назад в журнале археологических наук появилась статья, в которой рассказывается о старинных рукописях, найденных во время раскопок неподалеку от города Чахаке, расположенном на юге Ирана. Они представляют собой большую ценность, поскольку полностью меняют представление о наиболее выдающихся достижениях современности.

Раньше многие считали, что хромированная сталь была впервые открыта в начале 1900-х годов, и она стала настоящим прорывом для человечества. Однако, как утверждает археолог и доктор истории Рахиль Алипур из UCL Archaeology, хром начали добавлять при переплавке стали еще во времена Персидской империи, существовавшей около 1000 лет тому назад. И это не просто предположение, а научно доказанный факт.

Ненужные книги «вписала» в интерьер комнаты, но сначала преобразила их: фото

Вегетарианские котлетки из спаржи и творога: слепила — и в духовку

Приехала из Москвы и ловлю на себе оценивающие взгляды: столичная мода

Общая характеристика металлов

Все химические элементы делятся на металлы и неметаллы. В основе такого деления лежит различие в строении атомов элементов.

Неметаллы в таблице Периодической системы Менделеева занимают правый верхний угол (желтые ячейки на рисунке внизу):

Все остальные, не желтые ячейки плюс водород и гелий — занимают металлы. Таким образом, неметаллы и металлы в Периодической таблице разделены условной диагональю бор-астат.

Химические элементы, расположенные в непосредственной близости от этой диагонали (алюминий, титан, галлий, германий, сурьма, теллур, астат), имеют двойственные свойства, реагируя в некоторых случаях, как металлы, а в других — как неметаллы.

Закономерности расположения элементов в периодах (слева-направо):

  • Радиус атома — уменьшается;
  • Заряд ядра — увеличивается;
  • Электроотрицательность — увеличивается;
  • Кол-во электронов на внешнем слое — увеличивается;
  • Прочность связи внешних электронов с ядром атома — увеличивается;
  • Способность отдавать электроны — уменьшается.

Исходя из вышеуказанных закономерностей, нетрудно догадаться, что металлы находятся в начале каждого периода (слева), а неметаллы — в конце (справа).

Атомы металлов:

  • как правило, на внешнем электронном слое имеют 1-3 электрона (4 электрона у Ge, Sn, Pb; 5 — у Sb, Bi; 6 — у Po);
  • имеют больший размер атома и меньший заряд его ядра, по сравнению с неметаллами своего периода;
  • имеют высокопрочную связь внешних электронов с ядром атома;
  • легко расстаются с валентными электронами, превращаясь в катионы.

При н.у. все металлы (за исключением ртути) являются твердыми веществами, обладающими прочной кристаллической решеткой, образованной за счет металлических связей. Между узлами кристаллической решетки находятся свободные электроны, которые могут переносить теплоту и проводить электрический ток. Поэтому, в отличие от неметаллов, металлы хорошо проводят тепло и обладают высокой электропроводностью.

Физические свойства металлов:

  • твердые вещества (кроме ртути);
  • обладают характерным металлическим блеском;
  • обладают высокой электро- и теплопроводностью;
  • обладают высокими механическими качествами: упругостью, пластичностью, прочностью.

Самыми мягкими металлами являются калий и натрий (их можно резать ножом), самый твердый металл — хром (царапает стекло).

Самый легкоплавкий металл ртуть (-38,9°C), самый тугоплавкий — вольфрам (3380°C).

Самая низкая плотность у лития (0,59 г/см3), самая высокая — у осмия (22,48 г/см3).

Еще одной характерной особенностью металлов является их способность намагничиваться:

  • ферромагнетики обладают высокой способностью намагничиваться даже под действием незначительного магнитного поля (железо, никель);
  • парамагнетики проявляются слабую способность к намагничиванию (алюминий, хром);
  • диамагнетики не намагничиваются (олово, медь).

Применение платины

Платиновые цилиндры долго использовались в качестве международного стандарта для измерения веса. Ныне металл применяется для создания высокопрочных деталей для различных машин, инструментов и ювелирных изделий. Вследствие очень низкого уровня реактивности элемент используется в некоторых противораковых препаратах.

Согласно последним данным, около половины онкопациентов используют платиносодержащие препараты, поскольку противоопухолевые свойства платины уже хорошо изучены. Металл также используется в кардиостимуляторах, зубных коронках, и других устройствах из-за своей высокой стойкости к коррозии от жидкостей, образующихся в организме человека, и отсутствия реактивности к функциям жизнедеятельности.
Где ещё используется платина? В сочетании с кобальтом этот металл применяется для создания сильных постоянных магнитов, которые используются в часовых механизмах, двигателях, медицинском оборудовании.

Примерно треть мирового объёма потребления платины как драгметалла приходится на ювелирное дело. В частности, большинство крупных алмазов вставляются именно в платиновые корпуса.

Катализаторы

Почти половина добываемой платины используется в каталитических конвертерах — узлах автомобиля, которые уменьшают токсичность выхлопных газов до приемлемых значений. Они могут выдерживать высокие температуры, необходимые для реакций окисления, в ходе протекания которых и снижается токсичность выбросов. Кроме того, платина используется в качестве катализатора при производстве удобрений, пластмасс и бензина.

Монетарные функции. Знаки отличия

Поскольку платина – драгоценный металл, то во многих странах её хранят в форме слитков, которые можно использовать в целях межбанковских платежей. Производятся также памятные знаки. Вместе с тем, из-за ограниченности запасов объём производства таких предметов, в сравнении с золотом или серебром, невелик.

Как люди обрабатывали металлы?

Первые металлы, которые люди научились добывать и обрабатывать, были золото медь и бронза. Металлообработка осуществлялась ударными инструментами, так называемым холодным способом гибки. Для получения многих видов металлов использовали сыродутные печи. Для того, чтобы придать деталям правильную форму, древние мастера долгим упорным трудом шлифовали камнем заготовку. После чего был придуман новый метод – литье. Разъемные и неразъемные формы вырезались из дерева или камня, затем в них заливался сплав, после чего металл остывал, получалось готовое изделие.

Для изготовления фигурных изделий, использовали закрытую форму, для этого из воска вылепливали модель изделия, затем ее покрывали глиной и помещали в печь, где воск плавился, а глина повторяла точную модель. В пустоту заливали металл, после полного остывания, форма разбивалась и мастера получали изделие сложной формы.

Со временем были постигнуты новые способы работы с металлом, такие как пайка и сварка, ковка и литье.

Сегодня, появились новые технологии, которые позволяют обрабатывать металл намного быстрее. Механообработка осуществляется на токарных станках, которая позволяет получить готовое изделие с высокой точностью.

Токарная обработка является самым популярным способом. Она производится на специальных металлорежущих станках, которые настраиваются на выполнение работ из заданного вида металла. Токарные станки, на автоматическом и полуавтоматическом режиме, используют для серийного производства изделий с вращающейся формой тела.

Для металлообработки используют также станки с числовым программным управлением . Эти станки полностью автоматизированы, и основная цель оператора состоит в контроле работы, наладки оборудования, установки заготовки и снятии готового изделия.

Фрезерные работы представляет собой механический процесс по обработке металлов на универсальных фрезерных станках, требующий наличие опытного специалиста с глубокими знаниями в области металловедения и методах обработки металлов.

Для выполнения фрезерных работ высокого качества, важно использовать высокоточное оборудование. Степень фрезеровки напрямую зависит от эффективности и производительности

Поэтому неточности и погрешности в этом деле просто недопустимы.

Гость форума
От: admin

Эта тема закрыта для публикации ответов.