Реферат: черная металлургия

Алан-э-Дейл       29.04.2022 г.

1.3.3 Конверторные газы

Концентрация SO2
в отходящих газах в газоходе снижается вследствие очень больших подсосов воздуха через напыльник в газоходную систему. С целью повышения концентрации SO2
в газах для получены из него серной кислоты на предприятии установлены герметичные напыльники.

На графике приведён состав конверторных газов по ходу продувки

Рис 2. Состав конверторных газов по ходу продувки

1- обычный режим продувки;

2,3 – продувка обогащённой массы, перелитых из других конверторов;

4,5 – продувка штейна, залитого на оставленный в конверторе шлак;

6 – продувка после загрузки ферроникелевых «жуков»;

7 – продувка одного ковша штейна

1.3.4 Конверторная пыль

В результате интенсивной продувке расплава воздухом конвертерный процесс всегда сопровождается некоторым разбрызгиванием массы, которая выносится в газоходную систему и там оседает в виде конверторной пыли,

Частично из конвертера выносится мелкая фракция кварцевого флюса и холодных присадок.

Примерный состав конвертерной состав пыли приведен ниже, %:

Ni ………………….9,0-12,0 Fe…………………….16,0-25,0

Cu…………………10,0-15,0 S………………………10,0-12,0

Co………………….0,3-0,4 SiO2
……………………22,0-30,0

Конвертерная пыль является оборотным материалом. Крупную фракцию конвертерной пыли перерабатывают в конвертерах, а мелкую — в руднотермических электропечах.

Специфика отрасли

Руды цветных металлов, как было выше сказано, содержат малое количество добываемого элемента. Поэтому на тонну той же меди необходимо до 100 т руды. Из-за большой потребности в сырье цветная металлургия, по большей части, располагается вблизи своей сырьевой базы.

Цветные руды для своей переработки требуют большого количества топлива или электроэнергии. Энергетические затраты достигают половины общих затрат, связанных с выплавкой 1 т металла. В связи с этим металлургические предприятия располагаются в непосредственной близости от производителей электроэнергии.

Производство редких металлов в основном основано на восстановлении из соединений. Сырье поступает с промежуточных этапов обогащения руд. Из-за небольших объемов и трудности производства получением редких металлов занимаются лаборатории.

Металлургия тяжелых металлов

Получение меди

Основными этапами получения чистой меди являются выплавка черновой меди и ее дальнейшее рафинирование. Черновая медь добывается из руд, а низкая концентрация меди в уральских медных колчеданах и большие ее объемы не позволяют перенести производственные мощности с Урала. В качестве резерва выступают: медистые песчаники, медь-молибденовые, медь-никелевые руды.

Рафинирование меди и переплавка вторичного сырья производится на предприятиях, которые удалены от источников добычи и первичной плавки. Благоприятствует им низкая стоимость электричества, так как для получения тонны меди расходуется до 5 кВт энергии в час.

Металлургический завод

Утилизация сернистых газов с последующей переработкой послужила стартом для получения серной кислоты в химической промышленности. Из остатков апатитов производит фосфатные минеральные удобрения.

Получение свинца и цинка

Металлургия цветных металлов, таких как свинец и цинк, имеет сложную территориальную разобщенность. Добычу руды ведут на Северном Кавказе, в Забайкалье, Кузбассе и на Дальнем Востоке. А обогащение и металлургический передел проводится не только возле мест выемки руды, но и на других территориях с развитой металлургией.

Свинцовые и цинковые концентраты богаты на химическую элементную базу. Однако сырье имеет разное процентное содержание элементов, из-за чего не всегда цинк и свинец можно получить в чистом виде. Поэтому технологические процессы в районах различны:

  1. В Забайкалье получают только концентраты.
  2. На Дальнем Востоке получают свинец и цинковый концентрат.
  3. На Кузбассе получают цинк и свинцовый концентрат.
  4. На Северном Кавказе ведут передел.
  5. На Урале производят цинк.

1. Размещение предприятий отрасли

Размещение предприятий цветной металлургии зависит от многих экономических и природных условий, особенно от сырьевого фактора. Заметную роль, помимо сырья, играет топливно-энергетический фактор.

На территории России сформировано несколько основных баз цветной металлургии. Различия их в специализации объясняются несхожестью географии лёгких металлов (алюминиевая, титано-магниевая промышленность) и тяжёлых металлов (медная, свинцово-цинковая, оловянная, никель-кобальтовая промышленности).

1.1. Тяжёлые металлы

Производство тяжёлых цветных металлов в связи с небольшой потребностью в энергии приурочено к районам добычи сырья.

  • По запасам, добыче и обогащению медных руд, а также по выплавке меди ведущее место в России занимает Уральский экономический район, на территории которого выделяются Красноуральский, Кировградский, Среднеуральский, Медногорский комбинаты.
  • Свинцово-цинковая промышленность в целом тяготеет к районам распространения полиметаллических руд. К таким месторождениям относятся Садонское (Северный Кавказ), Салаирское (Западная Сибирь), Нерченское (Восточная Сибирь) и Дальнегорское (Дальний Восток).
  • Центром никель-кобальтовой промышленности являются города Норильск (Восточная Сибирь) и Мончегорск (Северный экономический район), а также поселок городского типа Никель (Мурманская область).

1.2. Лёгкие металлы

Для получения лёгких металлов требуется большое количество энергии. Поэтому сосредоточение предприятий, выплавляющих легкие металлы, у источников дешёвой энергии — важнейший принцип их размещения.

  • Сырьём для производства алюминия являются бокситы Северо-Западного района (Бокситогорск), Урала (город Североуральск), нефелины Кольского полуострова (Кировск) и юга Сибири (Горячегорск). Из этого алюминиевого сырья в районах добычи выделяют окись алюминия — глинозём. Получение из него металлического алюминия требует больших затрат электроэнергии. Поэтому алюминиевые заводы строят вблизи крупных электростанций, преимущественно ГЭС (Братской, Красноярской и др.)
  • Титано-магниевая промышленность размещается преимущественно на Урале, как в районах добычи сырья (Березниковский титано-магниевый завод), так и в районах дешёвой энергии (Усть-Каменогорский титано-магниевый завод). Заключительная стадия титано-магниевой металлургии — обработка металлов и их сплавов — чаще всего размещается в районах потребления готовой продукции.

5. Применения металлов

  • Медь обладает пластичностью и высокой электропроводностью. Именно поэтому она нашла свое широкое применение в электрических кабелях.
  • Золото и серебро очень тягучи, вязки и инертны, поэтому используются в ювелирном деле (особенно золото, которое не окисляется). Золото также используется для изготовления неокисляемых электрических соединений.
  • Железо и сталь обладают твердостью и прочностью. Благодаря этим их свойствам они широко используются в строительстве.
  • Алюминий ковок и хорошо проводит тепло. Он используется для изготовления кастрюль и фольги. Благодаря своей низкой плотности — при изготовлении частей самолётов.

Характеристика Центральной металлургической базы

Металлургическая база — группа металлургических предприятий, использующих общие рудные и топливные ресурсы и обеспечивающих главные потребности хозяйства страны в металле.

Центральная база черной металлургии располагается на территории Центрального, Центрально-Черноземного и Волго-Вятского экономических районов. Здесь, в Центральном экономическом районе, находится крупнейший железорудный район России, обеспечивающий 45% общероссийской добычи железной руды. Основная часть руды добывается в карьерах Белгородской и Курской областей, однако наиболее ценные руды с высоким содержанием железа залегают в более глубоких горизонтах и отрабатываются рудниками подземной добычи.

Масштабы развития металлургического передела в Центральной базе заметно скромнее уральских (22% чугуна, 16% стали, 17% готового проката и 15% труб общероссийского производства). Большая часть чугуна и стали Центральной базы производится на одном из крупнейших в стране и современном в технологическом отношении Новолипецком металлургическом комбинате. В Старом Осколе находится единственный в России, построенный по немецкой технологии металлургический завод, где из железорудного концентрата методом химического восстановления получают железо, а затем электросталь, минуя стадию производства чугуна

Этот прогрессивный способ металлургического передела не требует кокса и обладает низкими нормами водопотребления, что исключительно важно в Центрально-Черноземном экономическом районе, испытывающем дефицит пресной воды и не обладающем собственными ресурсами топлива

Из других предприятий металлургического передела выделяются Косогорский чугунолитейный и Новотульский металлургический заводы, а также сталелитейный завод «Электросталь» в одноименном городе Подмосковья. В городе Орел функционирует крупный сталепрокатный завод. Заметно уступают им по своей мощности Кулебакский, Выксунский и Омутнинский заводы Волго-Вятского экономического района, специализирующиеся на выпуске высококачественных специальных сталей для машиностроения. Большое развитие в Центральной базе черной металлургии получила малая металлургия — производство черных металлов и их сплавов, а также изготовление проката в металлургических цехах машиностроительных заводов Центра и Волго-Вятского района.

Основное преимущество Центральной базы черной металлургии заключается в расположении ее на территории крупнейшего в стране железорудного бассейна и в непосредственной близости от машиностроительных центров и других потребителей черных металлов.

Главные недостатки Центральной базы — отсутствие коксующихся углей, напряженный топливно-энергетический баланс и дефицит воды. Наиболее перспективными направлениями дальнейшего развития Центральной базы черной металлургии является форсирование железорудной промышленности как с целью более полного покрытия отечественных потребностей в ее продукции, так и для расширения экспортных поставок, а также увеличение мощности металлургического передела на основе передовой технологии Старо-Оскольского металлургического завода и развитие малой металлургии.

1.1.2 Флюсы

Флюсы — материалы, применяемые в металлургических процессах с целью образования или регулирования состава шлака, предохранения расплавленных металлов от взаимодействия с внешней газовой средой, а также служащие для связывания окислов при пайке и сварке металлов.

Кварцевый флюс (70-75% SiO2
) при конвертировании штейнов отвечает всем необходимым требованиям. Необходимо отметить, что кварцевый флюс в конверторном процессе применяют еще и в качестве регулятора температуры. Так же в качестве флюса применяется речной песок (65-68% SiO2
).

По техническим условиям содержание кремнезема SiO2
не должно быть ниже 67 %. Обычно предпочитают флюсы с максимальным содержанием кремнезема, поскольку в этом случае расход флюса минимален, а процесс шлакообразования протекает наиболее успешно. Влажность кварцевого флюса не должно превышать 2 %.

1.2. Теоретические основы процесса конвертирования медно-никелевых штейнов

Руда с низким содержанием металлов подвергается переработке на обогатительной фабрике в городе Заполярном. Полученный медно-никелевый сульфидный концентрат поступает в цех обжига, также расположенный в Заполярном. Обожженные окатыши поступают на рудную электроплавку в плавильный цех в поселке Никель. В сернокислотном цехе перерабатывают газы конверторного передела, содержащие в среднем 3% диоксида серы.

Богатые сульфидные медно-никелевые руды перерабатываются по схеме прямой селективной флотации с последовательным получением медного, никелевого, пирротинового концентратов и отвальных хвостов. Далее производится плавка.

Конвертирование штейнов — один из основных металлургических процессов в производстве меди и никеля. Конвертерный передел является частью плавильного цеха. В нем размещаются конвертеры — агрегаты, в которых перерабатывается медно-никелевый штейн, поступающий из рудно-термических и обеднительных электропечей. Целью конвертерного процесса является удаление из штейна практически всего железа и получение продукта, который называется файнштейном. В файнштейн с возможной полнотой должны быть извлечены никель, медь, кобальт, благородные (платина, рутений, родий, иридий, осмий) металлы.

В конверторах расплавленный штейн продувают воздухом в присутствии вводимого в конвертер кварцевого флюса. Образующее при продувке закисное железо FeO взаимодействует с кварцем флюса, образуя силикат типа фаялита [(FeO)2
ґSiO2
].

В операции конвертирования получают три конечных продукта: файнштейн; конверторный шлак и запыленные отходящие газы, содержащие сернистый ангидрид (SO2
).

Конверторный шлак направляют на операцию обеднения для обеспечения более высокого извлечения ценных металлов в файнштейн.

Конверторные газы после очистки от пыли, поступающей в оборот, выбрасывают в атмосферу или передают на сернокислотный завод для получения серной кислоты.

Файнштейн далее поступает на операцию разделения никеля и меди.

Сульфиды железа, кобальта, никеля и меди, из которых в основном состоит штейн, каждый в отдельности, при температуре конвертирования (1200С-1300o
С) обладает высоким сродством к кислороду. Это означает, что каждый сульфид способен активно окисляться кислородом по следующим реакциям:

FeS+0,5ґO2
=FeO+SO2
;

CoS+0,5ґO2
=CoO+SO2
;

Cu2
S+0,5ґO2
=2ґCu+SO2
;

2ґCu+0,5ґO2
=Cu2
O ;

Ni3
S2
+1,5ґO2
=3ґNiO+2ґSO2
.

Высокое сродство к кислороду при температурах конверторного процесса имеют также свободные металлы — железо, кобальт, никель и медь — и поэтому, они каждый в отдельности, весьма, активно взаимодействуют с кислородом.

При совместном присутствии в расплаве металлы и сульфиды окисляются не одновременно, а в определенной последовательности в соответствии с величинами их сродства к кислороду или сере.

а) не содержащих свободных металлов.

При продувке воздухом медно-никелевого штейна, не содержащего свободных металлов, в начале кислородом воздуха будет окисляться наиболее активная составляющая расплава FeS по реакции FeS+0.5ґO2
=FeO+SO2
.

Находящийся в расплаве FeS защищает сульфиды Со, Ni и Cu от окисления, так как обменные реакции MeO+FeS=MeS+FeO, где Me означает Со, Ni, Cu, протекают слева направо. Основная реакция конвертирования неметаллизированных штейнов:

2ґFeS+3ґO2
+SiO2
= (FeO)2
ґSiO2
+2ґSiO2
.

При конвертировании большее значение имеет процесс образования магнетита (Fe3
O4
). Магнетит образуется при конвертировании любых штейнов вследствие окислительного характера процесса.

2.2 Литейные алюминиевые сплавы

Наиболее широко распространены сплавы системы Al-Si- силумины.

Силумин имеет сочетание высоких литейных и механических свойств, малый удельный вес. Типичный силумин сплав АЛ2 (АК12) содержит 10-13% Si, Подвергается закалке и старению (АК7 (АЛ9), АК9 (АЛ4).

3. Цинк и его сплавы

Цинк
– вязкий металл голубовато-серого цвета. Металл с небольшой температурой плавления (419 градусов С) и высокой плотностью (7,1 г/см3
). Прочность цинка низкая (150 МПа) при высокой пластичности.

Цинк применяют для горячего и гальванического оцинкования стальных листов, в полиграфической промышленности, для изготовления гальванических элементов. Его используют как добавку в сплавы, в первую очередь в сплавы меди (латуни и т.д.), и как основу для цинковых сплавов, а также как типографский металл.

В зависимости от чистоты цинк делится на марки ЦВ00 (99,997% Zn), ЦВ0 (99,995% Zn), ЦВ (99,99% Zn), Ц0А (99,98% Zn), Ц0 (99,975% Zn), Ц1 (99,95% Zn), Ц2 (98,7% Zn), ЦЗ (97,5% Zn).

Цинковые сплавы широко применяются в машиностроении и разделяются на сплавы для литья под давлением, в кокиль, для центробежного литья и на антифрикционные сплавы. Основными легирующими компонентами цинковых сплавов являются алюминий, медь и магний. Отливки из цинковых сплавов легко полируются и воспринимают гальванические покрытия.

Состав, свойства и применение некоторых цинковых сплавов:

– ЦА4 содержит 3.9-4.3%Al, 0,03-0,06% Mg, временное сопротивление 250-300 МПа, пластичность 3-6%, твердость 70-90HB). Применяется при литье под давлением деталей, к которым предъявляются требования стабильности размеров и механических свойств.

– ЦАМ10-5Л содержит 9,0-12,4%Al, 4,0-5,5% Cu, 0,03-0,06% Mg, временное сопротивление не менее 250 МПа, пластичность не менее 0,4%, твердость – не менее 100HB. Из сплава изготавливают подшипники и втулки металлообрабатывающих станков, прессов, работающих под давлением до 200-10000 Па.

– ЦАМ9-1.5 содержит 9,0-11,0%Al, 1,0-2,0%Cu, 0,03-0,06% Mg, временное сопротивление не менее 250 МПа, пластичность не менее 1%, твердость не менее 90HB. Сплав применяют для изготовления разных узлов трения и подшипников подвижного состава.

4. Магний и его сплавы

Магний
– металл серебристо-белого цвета. Температура плавления магния 650°С. Кристаллическая решетка гексагональная. Отличается низкой плотностью (1,74 г/см3
), хорошей обрабатываемостью резанием, способностью воспринимать ударные и гасить вибрационные нагрузки.

В зависимости от содержания примесей установлены следующие марки магния: Мг96 (99,96% Mg), Мг95 (99,95% Mg), Мг90 (99,90% Mg), магний высокой чистоты (99,9999% Mg).

Магний химически активный металл, легко окисляется на воздухе. Чистый магний из-за низких механических свойств (временное сопротивление 100-190 МПа, относительное удлинение 6-17%, твердость 30-40НВ) как конструкционный материал практически не применяют. Его используют в пиротехнике, в химической промышленности для синтеза органических соединений, в металлургии различных металлов и сплавов как раскислитель, восстановитель и легирующий элемент.

2. История

На металлургическом заводе. Картина Адольфа фон Менцеля, 1875 год

Первые свидетельства того, что человек занимался металлургией, относятся к 5-6 тысячелетиям до н. э. и были найдены в Майданпеке, Плочнике и других местах в Сербии (в том числе медный топор 5500 лет до н. э., относящийся к культуре Винча), Болгарии (5000 лет до н. э.), Палмеле (Португалия), Испании, Стоунхендже (Великобритания). Однако, как это нередко случается со столь давними явлениями, возраст не всегда может быть точно определён.

В культуре ранних времён присутствуют серебро, медь, олово и метеоритное железо, позволявшие вести ограниченную металлообработку. Так, высоко ценились «Небесные кинжалы» — египетское оружие, созданное из метеоритного железа 3000 лет до н. э. Но, научившись добывать медь и олово из горной породы и получать сплав, названный бронзой, люди в 3500 годы до н. э. вступили в Бронзовый век.

Получение железа из руды и выплавка металла было гораздо сложнее. Считается, что технология была изобретена хеттами примерно в 1200 году до н. э., что стало началом Железного века. Секрет добычи и изготовления железа стал ключевым фактором могущества филистимлян.

Следы развития чёрной металлургии можно отследить во многих прошлых культурах и цивилизациях. Сюда входят древние и средневековые королевства и империи Среднего Востока и Ближнего Востока, древний Египет и Анатолия (Турция), Карфаген, греки и римляне античной и средневековой Европы, Китай, Индия, Япония и т. д. Нужно заметить, что многие методы, устройства и технологии металлургии первоначально были придуманы в Древнем Китае, а потом и европейцы освоили это ремесло (изобретя доменные печи, чугун, сталь, гидромолоты и т. п.).

Тем не менее, последние исследования свидетельствуют о том, что технологии римлян были гораздо более продвинутыми, чем предполагалось ранее, особенно в области горной добычи и ковки.

1.2.2 Тепловая работа конвертора

Конвертерный процесс осуществляется за счет тепла экзотермических реакций окисления свободного железа(Fe) и его сульфида(FeS) и ошлакования закиси железа и по этому не требует использования топлива. Основные реакции конвертирования:

6ґFe+3ґO2
+3ґSiO2
=3ґ[(FeO)2
ґSiO2
]+448800
кал

2ґFeS+3ґO2
+SiO2
= (FeO)2
ґSiO2
+2ґSO2
+246080
кал

Продувка металлизированных штейнов имеет значительно большие резервы тепла, чем продувка насыщенных серой не металлизированных расплавов. Основные данные по температурному режиму процесса конвертирования Сu-Ni штейнов:

Температура штейна рудотермических печей, o
C…………………1100-1200

Оптимальная температура массы в конвертере в период

набора, o
C………………………………………………………………1220-1250

Оптимальная температура массы в конвертере в период

варки файнштейна, o
C……………………………………………………1180

Температура, o
C:

конвертерных шлаков…………………………………………….1150-1290

конвертерных газов…………………………………………………950-1000

Количество холодных присадок зависит от степени металлизации штейна и ряда факторов, связанных с емкостью конвертера и характером поведения процесса. В условиях комбината «Печенганикель» количество холодных присадок составляет 10-20 %.

Расчет состава и количества штейна

Cодержание Cu в штейне – 45%.

Cодержание S в штейне – 25%

Компонент Кг %
Cu 16,8 45
Fe 7,28 19,51
S 9,33 25
Pb 0,4 1,07
Zn 2,1 5,62
O 1,04 2,8
Прочие 0,37 1
Всего 37,33 100

Расчет самоплавкого шлака

При

Компонент Кг % Норма, %
Si02 8,16 15,35 33
Fe 27,56 51,83
Pb 1,16 2,18
Zn 3,18 5,98
CaO 3 5,64 6
O 8,76 16,47
Cu 0,59 1,11
Прочие 0,76 1,43
Всего 53,17 100
Балансовое уравнение по кальцию

Дано:

Cостав флюса

1) SiO2-70% 2) СaO – 56%

Прочие – 30% Прочие – 0,08%

W=6 W=0

Компонент Кг %
SiO2 27,05 33
Fe 27,56 32,63
Pb 1,16 1,41
Zn 3,18 3,88
CaO 4.92 6
Cu 0,59 0,07
O 8,76 10,69
Прочие 8,85 10,80
Всего 81,96 100

W=6

Расчет необходимого количества дутья

FeS + 3/2O2 = FeO + SO2

1/2S2 + O2 = SO2

PbS + 3/2O2 = PbO + SO2

ZnS + 3/2O2 = ZnO + SO2

Компонент Кг Нм3 %
SO2 53,34 18,67 55,17
N2 5,27 4,22 12,47
H2O 6,98 8,69 25,68
CO2 3,85 1,96 5,79
Pb 0,44 0,05 0,15
Zn 0,72 0,25 0,74
Итого 70,6 33,84 100
Материал Кол-во Cu Fe S SiO2 O2 CaO N2 H2O CO2 Pb Zn
Загружено
1. К-т

105,26

17 28 36 5 3 5,26 2,35 2 6
2. Кварц

28,70

18.89 1.72
3. Изв-к

3.42

1.92 1.5
4. Кон.шл.

13.16

0,39 6,84 3,16 2,28
5. Воздух

5.30

1.24 4.06
6. Т.К.

34.16

32.96 1.20
Всего

190

17,39 34,84 36 27.05 36.48 4.92 5.26 6.98 3.85 2 6
Получено
1. Штейн

37,33

16,80 7.28 9.33 1.04 0,4 2,1
2. Шлак

81,96

0,59 27,56 27.05 8.76 4.92 1,16 3,18
3. Газы

70.6

26.67 26.67 5.26 6.98 3.85 0,44 0,72
Всего

190

17.39 34.84 36 27.05 36.48 4.92 5.26 6.98 3.85 2 6

Расчет тепла

Расчет прихода тепла

1.

2.

а) FeS + 3/2O2 = FeO + SO2 + 11025

б) 1/2S2 + O2 = SO2 +70900

в) ZnS + 3/2O2 = SO2 + ZnO +105560

г) PbS + 3/2O2 = SO2 + PbO +99760

д) 2FeO + SiO2 = (FeO)2 * SiO2 + 22200

е) CaO + SiO2 = CaO*SiO2 +21500

а)

б)

2CuFeS2 = Cu2S + 2FeS + 1/2S2

FeS2 = FeS +1/2S2

2CuS = Cu2S + 1/2S2

в)

г)

д)

е)

Расчет расхода тепла

На нагрев от 25 до 100 C

Эндотермические реакции

1) 4CuFeS2 — 2Cu2S + 4FeS + S2 — 78600

2) 2FeS2 — 2FeS + S2 — 64600

3) CuS — ½Cu2S + ¼ S2 — 10675

4) CaCO3 — CaO + CO2 — 42500

Потери тепла

Примем потери = 15% от 15607,47 ккал

Расчет необходимого количества дутья

На 1 кг угля.

С = 95 % 0,893
Проч = 5 % 0,047
W = 6% 0,06
Итого 1 кг

С + O2 = CO2 + 94052 ккал

Окончательный состав отходящих газов

Компонент Кг Нм3 %
SO2 53,34 18.67 53.83
CO2 5.01 2.55 7.35
N2 5.52 4.42 12.74
H2O 7.02 8.74 25.20
Pb 0.44 0.05 0.14
Zn 0.72 0.25 0.72
Всего 72.05 34.68 100

Баланс по теплу

Приход Ккал Расход Ккал
Горение топлива 4857,33 Тепло шлака 30132,28
Тепло к.шлака 4638,9 Тепло штейна 10289,08
Тепло реакций окисления 79526,19 Тепло отходящих газов 20751,2
Реакции шлакообразования 6193,82 Испарение влаги 4290,22
Эндотерм. Реакции 15607.47
Потери 14146,15
Всего 95216.24* Всего 95216.4*

*Погрешность вычислений = 0,000168%

Заключение

В данной курсовой работе был составлен тепловой и материальный баланс процесса плавки на штейне на примере плавки в жидкой ванне или процессе А.В.Ванюкова, который был выбран из-за своих технико-экономических показателей.

Технологический процесс А.В.Ванюкова позволил перевести в конверторный шлак 24% кварца, 3% меди, 52% железа, 17,32% кислорода; в 45%-тый медный штейн: почти 20% железа, 25% серы; в шлак после добавления кварцевого и известнякового флюсов перешло: 33% кварца и 6% оксида кальция (согласно требуемым показателям), а также 33.63% железа и около 0.6% меди.

В работе также был рассчитан тепловой баланс процесса, что позволило сделать следующие выводы: тепло на нагрев конверторного шлака составило 4638,9 ккал, на реакции окисления и шлакообразования: 85720,01 ккал, на нагрев штейна, шлака и отходящих газов с учетом требуемого топлива в размере 0,694 кг угля (95% C, 5% прочих) : 10289.08 ккал, 30132,28 ккал и 20751,2 ккал соответственно. Испарение влаги потребовало 4290,22 ккал, а потери составили 14146,15 ккал.

Отходящие газы приняли окончательный вид: SO2 ~ 53,83%, CO2 ~ 7,35%, N2 ~ 12,74%. Необходимо заметить то, что объем требуемого дуться на сжигание 0,694 кг топлива составил 1,36 нм3.

Таким образом, на примере данной работы, мы еще раз убедились в том, что процесс плавки по технологии А.В.Ванюкова является одним из лучших по своим технико-экономическим показателям, и, я надеюсь, что с развитием науки и появлением свободных денежных средств у предприятий, а также НИИ, позволит в будущем его усовершенствовать.

Гость форума
От: admin

Эта тема закрыта для публикации ответов.