Марки нержавеющей стали и их характеристики

Алан-э-Дейл       10.05.2023 г.

Классификация арматуры

Стандарты производства арматуры определены в ДСТУ 3760-98, который заменил старые ГОСТ 5781-82 и ГОСТ 10884-94.

Нормативные стандарты арматуры

  • Диаметр арматуры в периодическом профиле, иначе номер профиля — диаметр сечения стержня, соответствующий параметрам его площади;
  • Класс прочности изделия — условный, физический предел текучести стали,
    этот параметр регламентируется стандартами;
  • Площадь поперечного сечения номинальная — характеризует площадь сечения круглого гладкого стержня,
    которая соответствует его диаметру;
  • Высота поперечного выступа — это расстояние от центра профильного стержня и самой высокой точки на рифлении, которое измеряется перпендикулярно к продольной оси;
  • Шаг поперечного выступа — расстояние между двумя соседними рифлениями,
    которое измеряется вдоль продольной оси;
  • Угол наклона поперечного выступа — угол, который образует между собой продольная ось
    и поперечный выступ на арматурном изделии;

В соответствии с ДСТУ, классы арматуры имеют следующие обозначения: А240С, А300С, А400С, А500С, А600, А600К, А800, А800К, А1000, где число означает условный предел текучести в Н/кв.мм, индекс С — показатель способности арматуры к свариванию, а индекс К указывает на ее коррозионную стойкость.

Таблица 1. Номера профилей, масса 1 м длины арматурной стали гладкого и периодического профиля, предельные отклонения по массе для периодических профилей.
 

Номер профиля Масса 1 м профиля
Теоретическая, кг Предельные отклонения, %
6 0,222 +9,0/—7,0
8 0,395
10 0,617 +5,0/—6,0
12 0,888
14 1,21
16 1,58 +3,0/—5,0
18 2
20 2,47
22 2,98
25 3,85
28 4,83 +3,0/—5,0
32 6,31 +3,0/—4,0
36 7,99 +3,0/—4,0
40 9,87
45 12,48
50 15,41 +2,0/—4,0
55 18,65
60 22,19
70 30,21
80 39,46

Согласно стандартам, арматура классифицируется на 6 классов, в зависимости от толщины и марки применяемой стали, а так же имеющихся в связи с этим механических свойств:

  • Арматура А-I(А240) гладкие стержни;
  • Арматура А-II(А300);
  • Арматура А-III(А400);
  • Арматура А-IV(А600);
  • Арматура А-V(А800);
  • Арматура А-VI(А1000);
Арматурная сталь класса А-II (А300) в обычном исполнении Арматурная сталь класса Ас-II (Ас300) специального назначения
Арматурная сталь класса A-III (A400) и классов A-IV (A600), A-V (A800), А-VI (А 1000) Арматурная сталь классов A-IV (A600), A-V (A800), А-VI (А 1000) специального назначения

Арматура А1 выпускается диаметром от 6мм до 40мм, изготавливается из сталей, марок 3СП, Д16, и Ст3 (СтЗкп; СтЗпс; СтЗсп;). Применяется в условиях, требующих от неё повышенного значения удлинения при растяжении, пластичности и хорошей переносимости низких температур. Применение класса А1 возможно для сварки несущих конструкций, сеток.

Арматура А2 выпускается диаметром от 10мм до 80мм, изготавливается из сталей, марок: Ст5сп; Ст5пс; — для класса А2 диаметром от 10мм до 40мм. 18Г2С — для класса А2 диаметром от 40мм до 80мм. Область применения прокатного прута класса А2 мало отличается от области применения класса А1.

Арматура А3 выпускается диаметром от 6мм до 40мм, изготавливается из сталей, марок: Ст3, 25Г2С, 35ГС, А400, А500С. Сталь, применяемая для изготовления данного класса обладает хорошей свариваемостью. Это делает пруты класса А3 пригодными для изготовления железобетонных конструкций, поэтому изделия этого класса диаметром 10мм, 12мм и 14мм — наиболее часто применяема в промышленности и гражданском строительстве.

Арматура А4 выпускается диаметром от 10мм до 32мм,изготавливается из сталей, марок: 80С — для класса А4 диаметром от 10мм до 18мм. 20ХГ2Ц — для класса А4 диаметром от 10мм до 32мм.

Арматура класса А4 и вышестоящих классов, применяется в роли напрягаемой. Но технические особенности прута класса А4 таковы, что его можно применять и для ненапряженных конструкций. Свойство свариваемости стали, применяемой для изготовления этого класса таково, что предпочтительней использовать для ее стыковки способ обжатой обоймы.

Арматура А5 выпускается диаметром от 6мм до 36мм, для её изготовления применяется сталь марки 23Х2Г2Т (АТ800). Применяют металлопрокат такого класса в условиях, пригодных для напрягаемых стержней, конструкциях, имеющих длинные пролеты.

Арматура А6 выпускается диаметром от 6мм до 32мм, изготавливается из стали марки 22Х2Г2АЮ, 22Х2Г2Р, 20Х2Г2СР. Класс А6, как и класс А5 применяют в условиях, пригодных для напрягаемых стержней

Шарикоподшипниковая качественная конструкционная сталь ГОСТ 801-78

Нормативный документ: качественная конструкционная легированная сталь шарикоподшипниковая изготовляется согласно ГОСТ 801-78.

Классификация шарикоподшипниковой стали

По требованию к качеству поверхности и в зависимости от дальнейшей обработки:

  • для холодной механической обработки — ОХ;
  • для горячей обработки давлением — ОГ;
  • для холодной высадки — ХВ;
  • для холодной штамповки — ХШ.

По форме, размерам и предельным отклонениям:

  • горячекатаный круг сталь 40х — ГОСТ 2590-88;
  • горячекатаный квадрат — ГОСТ 2591-88;
  • заготовка квадратная — по действующим нормативным документам;
  • горячекатаная полоса — ГОСТ 103-76;
  • калиброванный круг квалитета h11 с дополнительными размерами — ГОСТ 7417-75;
  • круг со специальной отделкой поверхности квалитета h11 групп В и Г — ГОСТ 14955-77.

По состоянию материала:

  • без термической обработки;
  • термически обработанная.

Марки шарикоподшипниковой конструкционной стали

Марки стали: ШХ15, ШХ4, ШХ15 СГ, ШХ20 СГ.

Обозначение марок стали: Ш — подшипниковая, Х — легированная хромом, цифра — содержание хрома, СГ — легированная кремнием и марганцем. Например, сталь шарикоподшипниковая и рессорно-пружинная ШХ15.

Заменители некоторых марок стали:

  • ШХ15 — ШХ9, ШХ12, ШХ15 СГ;
  • ШХ15 СГ — ХВГ, ШХ15, ХС, ХВСГ.

Применение шарикоподшипниковой стали

Изготовление деталей, работающих под воздействием сосредоточенного и переменного напряжений, возникающих в зоне контакта шариков и роликов с беговыми дорожками колец подшипников качения. Особой популярностью пользуется ШХ15.

Свариваемость: сваривается способом КТС.

Термомеханическая обработка рессор и пружин

При высокотемпературной темомеханической обработке (ВТМО) рессорных сталей температуру аустенитизации принимают на 100–150 °С выше АС3, степень деформации 25–60 % при одновременном обжатии и до 70 % при дробной деформации. Оптимальные режимы ВТМО выбирают эмпирически для каждого изделия. В результате ВТМО достигается возрастание статической и усталостной (в том числе и малоцикловой) прочности, сопротивления разрушению, пластичности и ударной вязкости; понижение температуры порога хладноломкости, устранение обратимой отпускной хрупкости и уменьшение водородного охрупчивания при нанесении гальванических антикоррозионных покрытий.

Повышение комплекса свойств при ВТМО установлено для широкого круга пружинных сталей с различной степенью легирования: кремнистых (55С2, 60С2), хромомарганцевых (50ХГА), сталей марок 50ХФА, 45ХН2МФА и др. Наибольшая эффективность от ВТМО достигнута на сталях, содержащих карбидообразующие элементы – хром, ванадий, молибден, цирконий, ниобий и т. п. (стали марок 50ХМФ, 50Х5СМЗФ и др.).

При ВТМО возможно использование различных схем деформации (прокаткой, волочением, экструзией, штамповкой), но ввиду анизотропии упрочнения необходимо, чтобы направление, в котором достигнуто максимальное упрочнение совпадало с направлением действия максимальных напряжений при эксплуатации, т. е. схемы главных напряжений при ВТМО и в эксплуатации должны быть близки.

Важным преимуществом ВТМО, расширяющим область ее применения, является наследование субструктуры, созданной этой обработкой, даже после повторной закалки.

Перспективным методом обработки пружинных сталей является дополнительное упрочнение холодной пластической деформацией, осуществляемой после ВТМО.

В результате окончательного отпуска при 250 °С сохраняются прочностные характеристики стали и повышается ее пластичность.

Низкотемпературная термомеханическая обработка (НТМО) позволяет получить высокий комплекс пружинных свойств на углеродистых (У7А) и легированных сталях (70С2ХА и др.), что связано как с наследованием мартенситом дислокационной структуры деформированного аустенита, так и с развитием бейнитного превращения в процессе пластической деформации. Наиболее сильно после НТМО возрастает предел упругости. Эффект упрочнения при НТМО, как правило выше, чем при ВТМО. С точки зрения практического выполнения НТМО является более сложной обработкой.

Свойства стали после НТМО, особенно предел упругости и релаксационная стойкость, могут быть повышены в еще большей степени путем холодной пластической деформации с обжатием 10 % и старения.

Стабильность субструктуры и устойчивость упрочнения при нагреве стали после НТМО значительно меньше, чем после ВТМО. Повторная закалка почти полностью снимает эффект НТМО.

Недостатком НТМО является то, что рост упрочнения часто сопровождается снижением пластичности, повышением чувствительности к концентраторам напряжений.

Расшифровка марок нержавеющей стали

Для того чтобы правильно подобрать марку коррозионностойкой стали для реализации тех или иных целей, удобнее всего воспользоваться специальными справочниками. В них приведена информация обо всех возможных вариантах обозначения таких сплавов в различных странах мира. Среди огромного разнообразия марок, можно выделить те, которые получили наибольшее распространение среди специалистов во многих странах мира. К ним можно отнести следующие марки нержавеющих сталей с аустенитной структурой.

  • 10Х13Н17М3Т, 10Х13Н17М2Т: отличает эти марки, кроме исключительной коррозионной и термической устойчивости, хорошая способность образовывать сварные соединения. Благодаря таким качествам, изделия из сплавов данных марок могут успешно эксплуатироваться в условиях повышенных температур и контактировать даже с очень агрессивными средами. Составными элементами таких сплавов, которые и определяют их уникальные характеристики, являются: хром (16-18%), молибден (2-3%), никель (12-14%), углерод (0,1%), кремний (0,8%), медь (0,3%), титан (0,7%), марганец (2%), сера (0,02%), фосфор (0,035%). В других странах эти марки обозначаются иначе, в частности: в Китае — OCr18Ni12Mo2Ti, в Японии — SUS316Ti, в США — 316Ti, во Франции — Z6CNDT17-12.
  • 08Х18Н10, 08Х18Н9: данные марки стали используются для производства труб различных сечений, элементов печного оборудования, на предприятиях химической промышленности. В состав таких сталей входят: хром (17-19%), титан (0,5%), никель (8-10%), углерод (0,8%).

Воздуховоды из нержавеющей стали

  • 10Х23Н18: нержавеющие стали данной марки относятся к категории жаропрочных. При их использовании следует иметь в виду, что при выполнении их отпуска они могут становиться хрупкими. В состав сталей данной марки входят: хром (22-25%), никель (17-20%), марганец (2%), кремний (1%).
  • 08Х18Н10Т: изделия из нержавейки данной марки хорошо свариваются даже без предварительного подогрева и не утрачивают своей коррозионностойкости даже при высоких температурах. Недостаточно высокая прочность, которой отличаются стали данной марки, легко улучшается путем их термической обработки, которую рекомендует выполнять и ГОСТ 5632-72.
  • 06ХН28МДТ: уникальная марка стали, сварные конструкции из которой способны успешно эксплуатироваться даже в очень агрессивных средах. Состав данной марки коррозионностойкой стали включает в себя: хром (22-25%), никель (26-29%), медь (2,5-3,5%).
  • 12Х18Н10Т: изделия из данной марки стали, отличающейся высокой термической устойчивостью и исключительной ударной вязкостью, преимущественно используются на предприятиях по переработке нефти, в химической, целлюлозно-бумажной промышленности, а также в строительстве.

Таблица соответствий основных марок нержавеющих сталей и химический состав

К маркам нержавеющей стали с мартенситной структурой относятся: 40Х13, 20Х13, 12Х13, 30Х13. Изделия из данных марок нержавейки нельзя соединять методом сваривания, из них, в основном, изготавливают режущий и измерительный инструмент, рессорные элементы. Большими преимуществами таких изделий является практически полное отсутствие в них внутренних дефектов (флокенов), к тому же, они не становятся более хрупкими после выполнения отпуска.

К коррозионностойким сталям с ферритной структурой относятся: 08Х17, 08Х18Т1, 08Х13. Из стали данных марок не рекомендуется изготавливать детали, которые будут испытывать значительные ударные нагрузки и эксплуатироваться при пониженных температурах.

Для того чтобы разобраться в качественном и количественном составе нержавеющей стали, достаточно расшифровать ее марку. Алгоритм такой расшифровки достаточно прост:

  • по первому числу, стоящему в марке стали, определяют количественное содержание в ней основного после железа элемента — углерода (исчисляется в сотых долях процента);
  • содержание в составе стали других элементов (исчисляются в целых процентах), определяют по цифрам, стоящим за литерами, которыми такие элементы и обозначают (Х — хром, Н — никель, М — молибден и т.д.).

Широкий ассортимент марок нержавеющей стали позволяет найти оптимальный для себя вариант. Следует учитывать, что отдельные виды нержавейки могу взаимозаменяться в определенных пределах. Если при выборе стали возникли трудности, нужно обращаться к техническим консультантам специализированных фирм.

Так что выбрать: нержавейку или сплав

Это вопрос личных предпочтений, финансовых возможностей, отношения к бритью в целом и к технике использования станка. Поэтому я не берусь давать конкретные рекомендации. Вместо них предлагаю тезисы, которые отражают мое отношение к бритвам из разных материалов:

  • Меня постоянно нервировала возможность повредить покрытие станков Muhle или Merkur. Об аксессуаре из нержавейки можно не беспокоиться, если она упадет на пол или в раковину. Правда, я пока ни разу не ронял станок.
  • Бритвы из нержавейки кажутся мне неоправданно дорогими. С другой стороны, товар стоит столько, сколько за него готов заплатить покупатель.
  • Если бы передо мной лежали два «Вундербара» из разных материалов по одинаковой цене, я выбрал бы стальной.
  • Если бы передо мной лежал стальной Wunderbar за 130 долларов и «Вундербар» из сплава за 40 долларов, я бы постарался перед покупкой сравнить эффективность аппаратов. Если бы станки брили одинаково качественно, выбрал бы более дешевый вариант.
  • Мне не нравится, когда станок называют плохим только из-за того, что он сделан из ZAMAK. Качество бритья в минимальной степени зависит от материала изготовления. Если такая зависимость вообще есть. Гораздо важнее техника, отношение к процессу, подготовка.

Мне кажется, что разница между станками из стали и сплавов скорее находится в субъективной области, чем в объективной. Это вопрос эстетики, стремления владеть дорогой вещью. Да, мне больше подходит тяжелый аппарат. Но кому-то больше нравится легкий.

Прошу прощения за резкость, но иногда вопрос выбора между вещью из сплава и нержавейки сводится к обычному выпендрежу. Это хорошо прослеживается по заявлениям типа «фу, Muhle и Merkur для новичков, а настоящие мастера бреются только нержавейкой». На самом деле настоящий мастер может побриться даже коньком, но это совсем другая история.

Что в итоге? Выбирайте бритвы, которые вам нравятся. Станок должен вам подходить, а процесс его использования доставлять удовольствие. Это возможно с аксессуарами практически из любого материала, включая нержавейку, сплавы, бакелит и так далее.

Характеристики нержавеющих сталей

Аустенитные стали содержат 15-26% хрома и 5-25% никеля, которые увеличивают сопротивление коррозии и практически не магнитны.

Именно аустенитные хромникелевые стали обнаруживают особенно хорошие сочетание обрабатываемости, механических свойств и коррозионной стойкости. Эта группа сталей наиболее широко используется в промышленности и в производстве элементов крепежа: нержавеющих болтов, нержавеющих гаек, нержавеющих шпилек, нержавеющих винтов, а также нержавеющих шайб.

Стали аустенитной группы обозначаются начальной буквой «A» с дополнительным номером, который указывает на химический состав и применяемость в пределах этой группы:

Аустенитная структура

Группа стали Номер материала Краткое обозначение Номер по AISI
А1 1.4305 X 10 CrNiS 18-9 AISI 303
А2 1.4301 / 1.4303 X 5 CrNi 18-10 / X 4 CrNi 18-12 AISI 304 / AISI 305
А3 1.4541 X 6 CrNiTi 18-10 AISI 321
А4 1.4401 / 1.4404 X 5 CrNiMo 18-10 / X 2 CrNiMo 18-10 AISI 316 / AISI 316 L
А5 1.4571 X 6 CrNiMoTi 17-12-2 AISI 316 TI

Сталь A2 (AISI 304 = 1.4301 = 08Х18Н10) — нетоксичная, немагнитная, незакаливаемая, устойчивая к коррозии сталь. Легко поддается сварке и не становится при этом хрупкой. Может проявлять магнитные свойства в результате механической обработки (шайбы и некоторые виды шурупов). Это наиболее распространенная группа нержавеющих сталей. Ближайшие аналоги — 08Х18Н10 ГОСТ 5632, AISI 304 и AISI 304L (с пониженным содержанием углерода).

Крепеж и изделия из стали A2 подходят для использования в общестроительных работах (например, при монтаже вентилируемых фасадов, витражных конструкций из алюминия), при изготовлении ограждений, насосной техники, приборостроения из нерж. стали для нефтегазодобывающей, пищевой, химической промышленности, в судостроении. Сохраняет прочностные свойства при нагреве до 425°C, а при низких температурах до -200°C.

Сталь A4 (AISI 316 = 1.4401 = 10Х17Н13М2) — отличается от стали А2 добавлением 2-3% молибдена. Это значительно увеличивает ее способность сопротивляться коррозии и воздействию кислот. Сталь А4 имеет более высокие антимагнитные характеристики и абсолютно не магнитна. Ближайшие аналоги — 10Х17Н13М12 ГОСТ 5632, AISI 316 и AISI 316L (с низким содержанием углерода).

Крепеж и такелажные изделия из стали A4 рекомендуются для использования в судостроении. Крепеж и изделия из стали A4 подходят для использования в кислотах и средах содержащих хлор (например, в бассейнах и соленой воде). Может использоваться при температурах от -60 до 450°С.

Классы прочности

Все аустенитные стали (от «А1» до «А5») подразделяются на три класса прочности независимо от марки. Наименьшую прочность имеют стали в отожженном состоянии (класс прочности 50).

Поскольку аустенитные стали не упрочняются закалкой, наибольшую прочность они имеют в холоднодеформированном состоянии (классы прочности 70 и 80). Наиболее широко используется крепеж из сталей А2-70 и А4-80.

Основные механические свойства аустенитных сталей:

Тип по DIN

A2

A4

Тип по ASTM (AISI)

304

304L

316

316L

Удельный вес (гр/см)

7.95

7.95

7.95

7.95

Механические свойства при комнатной температуре (20°С)

Твердость по Бринеллю — НВ

В отожжённом состоянии

130-150

125-145

130-185

120-170

Твердость по Роквеллу — HRB/HRC

70-88

70-85

70-85

70-85

Предел прочности при растяжении, H/мм2

500-700

500-680

540-690

520-670

Предел прочности при растяжении, H/мм2

195-340

175-300

205-410

195-370

Относительное удлинение

65-50

65-50

60-40

60-40

Ударная вязкость

KCUL (Дж/см2)

160

160

160

160

KVL (Дж/см2)

180

180

180

180

Механические свойства при нагревании

Предел текучести при растяжении, H/мм2

при 300°C

125

115

140

138

при 400°C

125

115

при 500°C

105

Это интересно: Нержавеющие стали — свойства, характеристики, состав, виды

Сравнение композиной и металлической арматуры

Композитную арматуру  в частном домостроении целесообразно использовать только в отдельных случаях или в качестве вспомогательного каркаса, фибры и так далее. Полностью заменить прутки из металла она не может. Учитывая ее особенности, лучше применять данный материал при сооружении нежилых объектов. Например, различные вспомогательные постройки на участке, укрепление берега водоема. Кто захочет более детально ознакомиться со спецификой применения стеклопластиковой арматуры, дополнительную информацию сможет найти в СНиП от 2003 года за № 52-01. Хотя и там в основном – общие правила.
 

Применение сталей А2 и А4

Основные свойства определяют то, что подобные нержавеющие марки стали в большинстве случаев применяют при изготовлении крепежных элементов, используемых в сложных эксплуатационных условиях.

Применение нержавеющей стали А2:

  1. Изготовление крепежных изделий для общестроительных работ. Себестоимость крепежей зависит от цены самого металла, а также трудностей, возникающих при обработке. Для общестроительных работ подходят крепежи из низкой или средней ценовой категории, в которую входят варианты исполнения из марки А2.
  2. При создании ограждений. Ограждения постоянно подвергаются атмосферному влиянию. При условии повышенной влажности хорошо себя проявляют рассматриваемые нержавеющие сплавы.
  3. При сборке насосной техники и различных приборов. Насосы могут быть предназначены для создания давления различной среды. При этом применяемые металлы при их получении должны быть коррозионностойкими и не обладать магнитными свойствами, которые могут оказывать неблагоприятное воздействие на работу электродвигателя. Антимагнитные качества ценятся и при создании приборов, так как подобное поле может снижать точность измеряемых показателей.
  4. В нефтегазодобывающей и химической промышленности. Нефтепродукты и химикаты могут оказывать негативное воздействие на поверхность крепежей при отсутствии стойкости.

Основные механические свойства болтов из сталей заключаются в том, что они могут эксплуатироваться при высокой и низкой температурах, сохраняя основные качества. Ближайший аналог – 08Х18Н10, который также характеризуется сильной концентрацией легирующих веществ.

Гайка из стали А2

Марка А4 обладает хорошими антимагнитными качествами. Чаще всего она применяется при изготовлении крепежных изделий, которые применяются в судостроении. Высокая устойчивость к соленой воде определяет длительный срок эксплуатации. Кроме этого, применяется в среде с повышенным количеством хлора. При выпуске различных изделий учитываются классы прочности. Ближайший аналог, схожий по своим эксплуатационным качествам, 10Х17Н13М12. Подобная марка переносит воздействие температуры до 450 градусов Цельсия.

Состав

Механические, физические и технологические особенности нержавеющей стали А2 обеспечиваются оптимальным сочетанием в составе легирующих компонентов. В состав стали входят следующие элементы, влияющие на характеристики:

Углерод, C

Кремний, Si

Сера, S

Фосфор, P

Никель, Ni

Марганец, Mn

Молибден, Mo

Хром, Cr

0,1-0,5

1,0

0,3

0,05

8-19

2,0

До 5,0

15-20

В таблице указано процентное отношение элементов, входящих в состав А2.

При замене никеля на ванадий, получают идентичную марку стали, но отличающуюся повышенной прочностью и износостойкостью. Основным отличием марки стали А2 от других марок аустенитных данной категории (А), является повышенное содержание меди (Cu), до 4% (в таблице неуказанно)

Это интересно: Ниобий — свойства, получение, оксиды, соединения, применение металла

от -200 до +400 0С

Очень часто в эксплуатации крепёжных изделий воздействия агрессивных сред сопряжены с экстремально низкими или высокими температурами: в нефтегазовой отрасли в регионах Крайнего Севера и Заполярья, в тяжелой и химической промышленности – промеров множество. Даже в медицине порой требуются метизы, стойкие к химически активным реагентам при очень низких температурах. В таких случаях метизы из углеродистых сталей не обеспечивают надёжность крепления, особенно при длительной эксплуатации в таких условиях.

Аустенитные хромоникелевые сплавы благодаря высокому содержанию легирующих элементов отличаются не только своей коррозионной стойкостью. Крепёжные узлы, сформированные из метизов марки сталей А2 и А4 сохраняют прочностные характеристики при крайне низких и высоких температурах. Их механические свойства регламентированы серией федеральных стандартов ГОСТ Р ИСО 3506:

ГОСТ Р ИСО 3506-1-2009 Механические свойства крепежных изделий из коррозионно-стойкой нержавеющей стали. Болты, винты и шпильки

ГОСТ Р ИСО 3506-2-2009 Механические свойства крепежных изделий из коррозионно-стойкой нержавеющей стали. Гайки

ГОСТ Р ИСО 3506-3-2009 Механические свойства крепежных изделий из коррозионно-стойкой нержавеющей стали. Установочные винты и аналогичные крепёжные изделия, не подвергаемые растягивающему напряжению.

ГОСТ Р ИСО 3506-4-2009 Механические свойства крепежных изделий из коррозионно-стойкой нержавеющей стали. Самонарезающие винты

Как видно из названия, указанные стандарты идентичны международным стандартам ISO 3506 Mechanical properties of corrosion-resistant stainless steel fasteners. В них полностью сохранены обозначения, свойства коррозионностойких сталей и требования к ним, которые приняты во всём мире.

ГОСТ Р ИСО 3506 регламентируют не только химические составы хромоникелевых сталей, но и механические свойства нержавеющих метизов, в том числе при повышенных и низких температурах.

1.Свойства нержавеющих метизов при повышенных температурах по ГОСТ Р ИСО 3506

В справочном Приложении сказано:  

«Примечание – Если болты, винты и шпильки правильно рассчитаны, то сопряженные гайки будут автоматически им соответствовать. Следовательно, в случае применения при повышенных или низких температурах достаточно учитывать только механические свойства болтов, винтов и шпилек.»

В Таблице 1 Приложения приводятся значения предела текучести ReL или условного предела текучести Rp0.2при повышенных температурах в процентах от значений при комнатной температуре (которые вы можете посмотреть здесь):

Марка стали

ReL и Rр0,2 % при температуре

+100 0С

+200 0С

+300 0С

+400 0С

А2/А4

85

80

75

70

С1

95

90

80

65

С3

90

85

80

60

П р и м е ч а н и е — Значения применимы только для классов прочности 70 и 80.

Таким образом, зная температуру эксплуатации крепёжного соединения и марку стали, уже не составит труда рассчитать допустимую нагрузку при разных режимах, вплоть до +400 0С.

2. Применение при низких температурах.

Допустимые низкие температуры для эксплуатации болтов, винтов и шпилек из аустенитных нержавеющих сталей указаны в Таблице 2 того же Приложения

Марка стали

нижний предел рабочих температур при длительном действии

А2

-200 0С

А4

болты и винты1)

-60 0С

шпильки

-200 0С

1) В связи с наличием легирующего элемента Мо стабильность аустенита уменьшается и переходная температура смещается в сторону более высоких значений, если в процессе изготовления крепежные изделия подвергались высокой степени деформации.

Однако стоит уточнить, что нормативные значение, приведённые выше, носят скорее справочный характер. При выборе крепёжных изделий необходимо учитывать, что по факту химическая среда и нагружения на резьбовое соединение могут значительно отличаться от проектных. Знакопеременные нагрузки при воздействии повышенных температур увеличивают вероятность коррозионных напряжений в металлических изделиях.

За дополнительной консультацией обращайтесь к специалистам в технический отдел BEST-Крепёж.

Арматурная проволока

Холоднодеформированную арматуру (арматурную проволоку) диаметром от 3 до 12 мм изготавливают способом холодного волочения и подразделяют по форме поперечного сечения на гладкую и периодического профиля, а также по классам прочности: 500, 600, 1200, 1300, 1400, 1500. Класс прочности соответствует гарантированному значению условного предела текучести проволоки, МПа, с доверительной вероятностью 0,95

Расчетная площадь поперечного сечения и теоретическая масса 1000 м проволоки

Номинальный диаметр (номер профиля), мм Площадь поперечного сечения, мм2 Масса 1000 м, кг
3,0 7,07 55,5
4,0 12,57 98,7
5,0 19,63 154,1
6,0 28,27 221,9
7,0 38,48 302,1
8,0 50,27 394,6

Примечание. Линейная плотность проволоки периодического профиля класса В500 не должна превышать следующих значений: диаметром 3 мм — 0,052 кг, диаметром 4 мм — 0,092 кг, диаметром 5 мм — 0.144 кг.

В условных обозначениях холоднодеформированная арматура (проволока) обозначается буквой В. Например, проволока диаметром 5 мм класса прочности 1400 обозначается: 5-В1400.Пример условного обозначения проволоки номинальным диаметром 3,0 мм класса прочности 500;Проволока 3-В500 ГОСТ 6727-80

В качестве ненапрягаемой арматуры применяют проволоку класса B500(Bp-I, В500С), которую изготовляют из низкоуглеродистой стали по ГОСТ 380, а для напрягаемой арматуры применяют проволоку гладкую и периодического профиля классов прочности 1200,1300, 1400 и 1500, которую производят из углеродистой конструкционной стали марок 65-85 по ГОСТ 14959. Проволоку класса В600, изготовляемую из стали марок СтЗкп и Ст5пс с термической обработкой, можно применять в качестве ненапрягаемой и напрягаемой арматуры

Марку стали для арматурной проволоки завод-изготовитель выбирает так, чтобы обеспечить заданные стандартами и техническими условиями механические свойства.
Высокопрочную арматурную проволоку в процессе изготовления подвергают низкотемпературному отпуску, в результате чего повышаются ее упругие свойства: развернутая из мотка и свободно уложенная проволока должна сохранять нормируемую прямолинейность.
Высокопрочную проволоку диаметром 7 и 8 мм изготовляют по разовым заказам, согласованным с заводом-изготовителем

Характеристика холоднотянутой проволоки

Класс арматурной проволоки ГОСТ и ТУ Класс прочности Номи — нальный диаметр, мм Разрывное усилие, кН Усилие, соотв. пределу текучести, кН Относи-тельное удлинение после разрыва на расчетной длине 100мм, % Число перегибов на 180° Диаметр оправки при испытании на изгиб на 180° в холодном сост., мм
В ГОСТ 6727 500 3 3,9 3,5 2 4
В ГОСТ 6727 500 4 7,1 6,2 2,5 4
В ГОСТ 6727 500 5 10,6 9,7 3 4
В ТУ 14-4-1322-85 600 4 10,5 8 2,5 4
В ТУ 14-4-1322-85 600 4,5 13,2 10,2 2,7 4
В ТУ 14-4-1322-85 600 5 16,4 12,5 3 5
В ТУ 14-4-1322-85 600 6 22,6 18 4 6
В ГОСТ 7348 1500 3 12,6 106 4 9(8)
В ГОСТ 7348 1400 4 21,4 18 4 7(6)
В ГОСТ 7348 1400 5 32,8 27,5 4 5(3)
В ГОСТ 7348 1400 6 47,3 39,7 5 30
В ГОСТ 7348 1300 7 60,4 50,7 6 35
В ГОСТ 7348 1200 8 74 62 6 40

Примечания:
В скобках приведены данные для проволоки периодического профиля.
Для гладкой стабилизированной проволоки диаметром 5 мм (ТУ 14-4-1362-85) усилие, соответствующее условному пределу текучести, равно 30,1 кН

Промышленностью освоено производство следующих новых видов арматурной проволоки:
стабилизированной гладкой высокопрочной проволоки диаметром 5 мм с повышенной релаксационной стойкостью;
низкоуглеродистой проволоки периодического профиля диаметром 4-6 мм повышенной прочности класса В600.
Проволока изготовляется в мотках массой 500-1500 кг. Допускается изготовление, проволоки в мотках массой 20-100 кг. Каждый моток должен состоять из одного отрезка проволоки. Проволока должна быть свернута в мотки неперепутанными рядами

Гость форума
От: admin

Эта тема закрыта для публикации ответов.