Литье алюминия по форме из пенопласта

Алан-э-Дейл       07.09.2022 г.

Содержание

Изготовление моделей из пенополистирольных плит

В качестве материала используют готовые пенополистирольные плиты марки ПС-Б и ПС-БС с габаритами до 1000 * 700 * 100 мм. Плотность плит 20 – 25 кг/м3, напряжения на изгиб 0,09 – 0,23 МПа при 5%-ной деформации; остаток после испарения образца не более 2 мас. %; скорость плавления около 25 мм/с.

Пенополистирол легко обрабатывается на обычных деревообрабатывающих станках. Чистовую обработку ведут при больших скоростях резания и малых подачах, используя инструмент с мелкой насечкой, тонкие наждачные круги и шлифовальную шкурку.

Одним из способов обработки пенололистирола является обработка горячей электронагреваемой нихромовой проволокой. Температура нагрева режущей проволоки должна находиться в пределах 300 – 450оС. Преимущество данного способа заключается в том, что гранулы пенополистирола не выкрашиваются, а оплавляются по поверхности разреза и закрывают поры.

Обычно сложные модели изготовляют из отдельных частей простой геометрической формы с последующим их склеиванием, термической сваркой или сваркой растворением пенополистирола.

Термическая сварка осуществляется с помощью струи воздуха, нагретого до 105 – 130оС. В качестве присадочного материала используют прутки из пенополистирола. Наплывы в местах сварки устраняют заглаживанием нагретым инструментом.

Для сварки растворением пенополистирол растворяют в стироле, толуоле, дихлорэтане до достижения консистенции киселя. Полученный состав наносят тонким слоем на соединяемые поверхности, при этом материал модели несколько растворяется. После соединения поверхностей и выдержки в течение 8 – 10 мин под небольшим давлением образуется прочный однородный с материалом модели соединительный шов.

Пенополистирольные модели значительно дешевле деревянных, что особенно важно в единичном производстве. Время, затрачиваемое на их изготовление, в 2 – 3 раза меньше, при этом не расходуется древесина высокого качества

Собранные модели и модельные блоки покрывают противопригарной краской или суспензией толщиной 0,2 – 2,0 мм. После сушки покрытие предохраняет отливку от пригара и повышает прочность модели.

К недостаткам литья по газифицируемым моделям можно отнести безвозвратные потери материала разовой модели и выделение токсичных продуктов ее термодеструкции, что требует проведения соответствующих защитных мероприятий. В варианте процесса с вакуумированием формы во время ее заливки продукты термодеструкции модели могут поступать непосредственно из формы в установку для каталитического их дожигания до диоксида углерода и паров воды.

  • ← Раздел 6.2
  • Раздел 7.2 →

Выберите регион

Россия

  • Алтайский край
  • Белгородская область
  • Брянская область
  • Владимирская область
  • Волгоградская область
  • Вологодская область
  • Воронежская область
  • Ивановская область
  • Иркутская область
  • Кабардино-Балкарская Республика
  • Калужская область
  • Кемеровская область
  • Кировская область
  • Краснодарский край
  • Красноярский край
  • Курганская область
  • Курская область
  • Ленинградская область
  • Липецкая область
  • Московская область
  • Нижегородская область
  • Новгородская область
  • Новосибирская область
  • Омская область
  • Оренбургская область
  • Орловская область
  • Пензенская область
  • Пермский край
  • Псковская область
  • Республика Адыгея
  • Республика Башкортостан
  • Республика Дагестан
  • Республика Коми
  • Республика Крым
  • Республика Марий Эл
  • Республика Мордовия
  • Республика Татарстан
  • Республика Хакасия
  • Ростовская область
  • Рязанская область
  • Самарская область
  • Саратовская область
  • Свердловская область
  • Смоленская область
  • Ставропольский край
  • Тамбовская область
  • Тверская область
  • Томская область
  • Тульская область
  • Тюменская область
  • Удмуртская Республика
  • Ульяновская область
  • Ханты-Мансийский АО — Югра
  • Челябинская область
  • Чувашская Республика
  • Ярославская область

ЛГМ технология. Завод АКС

Завод Арматуры Контактной Сети (ООО «Завод АКС») работает на российском литейном рынке с 1994 года.

За небольшой период работы на предприятии сформировался коллектив высоко квалифицированных специалистов, профессионалов в области металлургии, которые успешно решают поставленные задачи. Предприятие изготавливает
отливки
из сталей, легированных и нержавеющих, бронзы различных марок, алюминия, латуни, меди.

Основные технологии, используемые в производстве:

  • литье по выплавляемым моделям;
  • литье по газифицируемым моделям.

Эти методы точного литья позволяют получать сложные конструкции отливок с высоким качеством.

Наше предприятие (ООО «Завод АКС») обеспечивает полный цикл получения литых изделий – от чертежа отливки, проектирования и изготовления пресс-формы, отработки технологии изготовления отливки и до запуска в серию, что позволяет сократить производственный процесс по срокам.

Наличие на производстве высокоскоростного современного оборудования, в том числе обрабатывающих центров с ЧПУ, позволяет предложить Заказчику фрезерные, токарные, расточные работы. А также работы по плазменному раскрою металла.

Одним из приоритетных направлений деятельности ООО «Завод АКС» является проектирование и изготовление формовочных комплексов нестандартного оборудования для точного литья по газифицируемым
моделям
.

В 1998 году специалистами предприятия была освоена технология литья по газифицируемым моделям. Создана проектно-конструкторская группа, которая занимается реализацией проектов в данной области. С 2005 года нами построено более 20 цехов на различных производствах России, Белоруссии, Казахстана, Японии. Наше предприятие осуществляет комплексную поставку оборудования для литейных цехов, включающую плавильный участок, участки формовки и обработки отливок.

Сегодня, спустя двадцать лет, оценивая тот опыт, который ООО «Завод АКС» приобрел и учитывая количество шишек, полученных в процессе освоения этой технологиии (ЛГМ) хотелось бы акцентировать внимание на некоторых важных моментах для всех тех ,кто задумывается об организации литейного производства по ЛГМ технологии.

Преимущества

№ п.п. Показатель ПФ ХТС ВПФ ЛВМ ЛГМ
1 Точность (макс), класс по ГОСТ 26645-85 6…7 5…6 6…7 4…5 3…4
2 Шероховатость (min, Ra) по ГОСТ 26645-85 10…16 6,3…10,0 3,2…6,3 3,2…5,0 3,2…6,3
3 Расход формовочных материалов/энергоносителей 1/1 2…4 0,2…0,5 5…10 0,2…0,5
4 Трудоемкость 0,7…0,9 1,1…1,2 2,3…2,5 0,2…0,8
5 Стоимость модельной оснастки 2…5 2…5
6 Затраты на организацию производства 1,1…1,2 1,1…1,2 1,5…3,0 1,8…2,0

Затраты на организацию производства ЛГМ, включают в себя проектирование и изготовление пресс-форм.
Технология ЛГМ позволяет получать отливки весом от 10 грамм до 2000 килограмм с чистотой поверхности Rz40, размерной и весовой точностью до 7 класса (ГОСТ Р 53464-2009).

Материалы отливок
  • практически все марки чугунов от СЧ15 до ВЧ50, износостойкие
  • стали, от простых углеродистых ст. 20-45 до высоколегированных, теплостойких и жаропрочных
  • практически все литейные марки бронз, латунь, алюминий

Технология ЛГМ продолжает активно развивается во всем мире, но многие российские компании продолжают использовать устаревшие методы литья — более дорогие, требующие больше усилий и времени. Внедрению современного способа литья по ЛГМ мешает недостаток информации и укоренившиеся стереотипы.

Изготовление газифицируемых моделей

Процесс получения моделей в массовом и крупносерийном производстве состоит из двух стадий: предварительное вспенивание исходных гранул вспенивающегося полистирола в свободном состоянии и окончательное вспенивание гранул в замкнутой полости пресс-формы – получение модели.

Предварительная тепловая обработка вспенивающегося полистирола необходима для получения впоследствии газифицируемой модели с заданной объемной массой (плотностью), которая определяет прочность модели и качество поверхности. Вспенивающая способность гранул заданной дисперсности определяется температурой и временем тепловой обработки (рисунок 7.2).

Рисунок 7.2 – Увеличение объема гранул пенополистирола (V) в зависимости от температуры (цифры у кривых) и продолжительности подвспенивания (t): сплошные линии – начальный размер гранул 2,5 мм; пунктирные – 1,5 мм

С увеличением продолжительности тепловой обработки объем гранул увеличивается и, соответственно, уменьшается насыпная масса подвспененных гранул. Повышение температуры обработки приводит к сокращению времени, при котором гранулы достигают максимального объема. Но при температурах выше 95оС процесс становится нестабильным и передержка гранул приводит к потере их активности и усадке. Это связано с увеличением скорости деформации полистирольной оболочки гранул при повышении температуры, в результате чего стенки отдельных ячеек гранул разрушаются и происходит потеря порообразователя.

На предприятиях с небольшим объемом производства предварительное вспенивание целесообразно проводить в горячей воде. Для этого исходные гранулы полистирола помешают в воду при температуре 95 – 100оС и выдерживают в течение 1 – 10 мин при постоянном помешивании, чтобы обеспечить равномерность тепловой обработки и исключить слипание гранул. После выдержки, необходимой для подвспенивания гранул до заданной насыпной массы, их извлекают и засыпают на стеллажи с сетчатым дном для просушивания и выдержки на воздухе.

Для нагрева гранул при предварительном вспенивании применяют также обработку паром и токами высокой частоты. В условиях крупносерийного и массового производства чаще всего используют перегретый пар.

После предварительного вспенивания гранулы выдерживают на воздухе от 6 ч до 2 суток. В этот период оболочка гранул, охлаждаясь, вновь переходит в стеклообразное твердое состояние, а пары изопентана конденсируются, что приводит к возникновению вакуума в гранулах. В процессе выдержки происходит диффузия воздуха внутрь гранул и давление выравнивается. Для сокращения времени выдерживания подвспененных гранул можно использовать выдержку их при повышенном до 0,2 – 0,3 МПа давлении.

Технология

Этот метод используется для производства изделий из разных сплавов. Обеспечивается показатель качества до ±0,005 мм на каждые 25 мм поверхности. Указанная точность позволяет изготавливать изделия, которые не требуют дополнительной обработки. Залог успешности технологического процесса в том, что модель производится из быстро плавящегося вещества. Используется парафин, воск, канифоль либо их смесь.

Технологический процесс состоит из действий:

  1. Производство модели:
  • под модель берётся специальная форма из гипса, пластмассы, стали либо чугуна;
  • в нее заливается вещество образующее модель;
  • необходимо дождаться его полного застывания;
  • после этого специальная форма открывается, восковая модель вынимается и помещается в емкость под прохладную воду.

Сборка моделей в блоки:

  • для производства качественного изделия модели собираются в простые и сложные блоки, в каждый из них может войти от 2 до 100 штук;
  • для увеличения прочности в блочную конструкцию устанавливают алюминиевые стойки;
  • их покрывают слоем модельного вещества до 25 мм;
  • блочные конструкции объединяются в литниковую систему.

Нанесение на модель огнестойкой оболочки:

  • блок собранный из нескольких моделей помещается в емкость, где находится суспензия из керамики (кварцевая пыль, мелкие фракции шамота) и связывающего компонента (этилово силикатного раствора);
  • на протяжении суток он сушится в естественной среде, это время можно сократить до 40 минут под воздействием аммиака;
  • таким образом, на указанный блок поочередно наносится 46 слоёв огнезащитной оболочки, с тщательной просушкой каждого из них;
  • завершенная модель в огнезащитной оболочке помещается в нагретую воду 90°С;
  • за несколько минут модельное вещество растает и всплывет на поверхность воды, где оно собирается для следующего применения.

Подготовление формы к заливке:

  • пустая оболочка промывается в воде и сушится в шкафу на протяжении 2 часов при 200°С;
  • сухая оболочка выставляется вертикально в жаростойкую опоку и по краям уплотняется кварцевым песком, помещается в печь на 2 часа при 950°С;
  • в печи испаряется оставшаяся влага, остатки модельного состава выгорают, оболочка спекается с огнеупорным материалом, повышая прочность;
  • расплавленный металл заливается в прокаленную горячую форму.

Охлаждение отливки:

  • после того, как отливка остыла — оболочка разрушается;
  • изделие очищается от ее остатков, для чего поддается химической очистке;
  • далее изделие промывается водой и подвергается окончательной сушке.

В итоге, оно подлежит для проведения термической обработки и снятия контрольных мерок. Таким образом изготавливаются отливки необходимого размера и конфигурации.

Технологический цикл

Изготовление моделей

Для изготовления моделей используется литейный полистирол мелких фракций 0,3 мм — 0,9 мм. (в зависимости от габаритов детали). Полистирол предварительно подвспенивается на паровой ванне и просушивается. В пресс-формы задувается подвспененный полистирол, пресс-формы устанавливают в автоклав и выдерживают до спекания гранул полистирола. Затем охлаждают и достают готовые модели. Другой способ изготовления моделей — на модельных автоматах, что повышает производительность в 2-4 раза.

Формирование куста и окраска моделей

Модели собираются в блоки (кусты) склеиванием, либо припаиваются. Окраска блоков моделей производится в 1 слой специальным противопригарным покрытием путём окунания в ванну, либо при сложной конфигурации отливок, обливом. Сушка окрашенных блоков производится в камере при температуре 40-60С в течение 2-3 часов.

Формовка

Формовка блоков моделей производится в специальные опоки на вибростоле постепенной засыпкой песком, либо послойно.

Подача опок на заливочный участок

Заформованные опоки подаются на заливочный участок. Опоки подсоединяются к вакуумной системе. Наверх формы укладывается полиэтиленовая пленка. После включения вакуумного насоса и системы очистки газов, формовочный песок приобретает необходимую прочность.

Заливка металла

Заливка металла производится прямо в полистирольные стояки. Горячий металл выжигает (газифицирует) полистирол и занимает его место. Выделяющиеся газы отсасываются через слой краски в песок вакуумной системой. Металл точно повторяет форму полистирольного блока с моделями.

Охлаждение отливок

Залитые блоки моделей остывают в песке от 5 минут до нескольких часов в зависимости от толщины отливки, массы детали и технических условий, оговоренных технологическим процессом.

Отрезка и очистка деталей

После извлечения блоков из опоки и отрезки отливок от литниковой системы, они проходят очистку от остатков антипригарного покрытия.

Плюсы и минусы процесса

Литьё по выплавляемым моделям имеет свои преимущества:

  • отсутствие разъема в форме приводит к повышению точности литья;
  • простота действий и дешевизна рабочего процесса;
  • возможность сделать огромное разнообразие форм для отливки;
  • широкий диапазон размеров и массы отливок;
  • дает возможность получить сложные конструкции из любых сплавов;
  • высокая точность изделия и чистота поверхностного слоя может исключить необходимость последующей механической обработки;
  • оболочка легко разрушается;
  • отливки хорошо очищаются от ее остатков.

Присутствуют и недостатки:

требует осторожности в ходе проведения технологического процесса литья;
длительность рабочего процесса подготовки формы;
данное производство является рентабельным только при его массовом применении;
необходимость проветривания в помещении;
следует строго придерживаться технике безопасности;
работа с расплавленным металлом требует особого внимания.

Как видим, литьё по выплавляемым моделям обладает достаточным количеством преимуществ, по этой причине оно широко применяется в различных отраслях машиностроения.

Цеха для литья по выплавляемым моделям находятся во многих самодостаточных заводах. Это позволяет делать качественные детали с большой точностью в короткие сроки, экономя денежные средства.

/5 — голосов

Разновидности видов выплавляемых моделей

В основе модельного литья лежит удаление специального состава одним из следующих способов:

  • выплавление;
  • выжигание;
  • растворение.

Выплавляемые смеси для точного модельного литья представляют легкоплавкие материалы (парафин, воск и аналоги). Удаление состава идет с помощью нагрева горячим воздухом, паром, горячей водой, температура которых выше температуры плавления самого модельного состава.

Выжигаемые смеси выполняют из обычного или вспененного полистирола. В этом случае удаление первоначальной формы происходит на стадии прокаливания оболочки, так температура в этом случае значительно выше плавления полимеров.

Растворяемые составы для модельного литья имеют основу в виде синтезированной мочевины (карбамида), нитрата калия или натрия, ряда других материалов, которые хорошо растворяются в воде. Для удаления вещества используют обычную теплую воду.

Литейные полистиролы для технологии ЛГМ Р106 и Р107

Литейные вспенивающиеся полистиролы (EPS) Р106 и Р107  производятся в Китае, специально для литейного производства.

Отличительной особенностью данных материалов от строительных и упаковочных материалов, является низкая температура воспламенения, в связи с отсутствием «тормозящих компонентов».

Литейные пенополистиролы производятся в видее сферических гранул точных размеров, что позволяет получить высокоточные пеномодели. Вспенивающим агентом является пентан.

ВНИМАНИЕ. Пенополистиролы Р106 и Р107, отличаются от марок других производителей повышенным содержанием пентана (более 7-8%), что обеспечивает их высокую живучесть и качество поверхности пено-моделей

Предлагаемые полистиролы специально разработаны для технологии Lost Foam (ЛГМ). Производимые из этих материалов полистирольные модели обладают идеальными  поверхностными качествами, высокоточными размерами, и однородной внутренней структурой. Эти характеристики вместе с высокой газовой эмиссией материала и небольшой остаточной углеродной составляющей, гарантируют получение высококачественных отливок.

Применение.

Предлагаемые полистиролы Р106 и Р107 применяются в Lost Foam технологии для производства пеномоделей и дальнейшего литья отливок сложных форм из чугуна, алюминия и медных сплавов.

Данная технология особенно эффективная при производстве изделий сложной формы (блоки двигателей, коллекторы, лопасти для турбин и др.).

Р106 обладает более крупными гранулами и поэтому рекомендуется при использовании моделей со стенками не менее 6 мм толщиной. Р107 мы использовали для изготовления моделей с толщиной стенки 1,8мм и более.

  • Поставка материала осуществляется со специально- оборудованного склада-холодильника из 
  •  г.  Ульяновска.
  • Поставляемые партии от 1-10000 кг.
  • Заводская упаковка 25кг. Многослойный герметичный мешок.
  • Оптовая цена продаж 250 руб/кг.
  • Заказы по тел. 905-349-20-71

Свойства (Общая информация)

1

Внешний вид

белый жемчуг, как сфера

2

Удельный вес

приблизительно.1.06

3

Насыпная плотность

приблизительно.0.6-0.65

4

Пенополистирол

92-95%

5

Пенообразователь

6-9%  в зависимости от сорта и времени хранения

6

Свободный мономер

<0.3%

7

Содержание воды

<0.5%

8

Характеристики

Высокого расширения

9

Приложения

Легкий вес

Спецификация

Марка

 

Размер бисера класс в упаковке (Диаметр)

Расширяемый коэфициент (один раз)

Плотность

Приложения

 

mm

Times

g/l

P-103B

1.00-1.8

70-90

12-18

Сверхмощный лист блока и легкий вес литье

P-104

0.80-1.30

65-85

13-20

Обычный пакет и коробку прессформы

P-105

0.60-0.90

60-75

16-22

Точность с толщиной более 12 мм и большие изделия прессформы

P-106

0.5-0.75

55-70

18-24

Высокая точность и с толщиной более 8мм модели.

P-107

0.35-0.6

50-65

22-26

Точность и высокая плотность изделий.

Упаковка и хранение.

Материал упаковывается в многослойных герметичных мешках по 25 кг.

EPS материалы лучше  хранятся в сухом помещении при температуре менее 5°C. При этих параметрах температуры материал может храниться 12-14 месяцев.

Модельные материалы и способы изготовления

В качестве материалов для газифицируемых моделей шире всего применяется плотный пенопласт (вспененный полистирол) мелких фракций.

Плотный пенопласт для ЛГМ

В зависимости от размеров детали применяются гранулы от 0,2 до 1,0 мм. Материал обладает такими ключевыми свойствами, как:

  • Низкая цена.
  • Высокая прочность.
  • Легкообрабатываемость.

Вторым важным материалом для газифицируемых моделей являются антипригарные покрытия, которыми смазывают поверхность модели перед формовкой. Современные покрытия делают на основе водных связующих, они обладают высокой экологичностью.

Антипригарные покрытия для ЛГМ

Газифицируемые модели для отливок по ЛГМ производятся двумя способами. Небольшие матрицы для массовых отливок делают методом экструзионного вдувания жидкого пенопласта в алюминиевые изложницы. Их изготовляют в свою очередь методом литья или механической обработки. Газифицируемые макеты для изготовления сложных отливок вырезают из твердого куска пенопласта раскаленной нихромовой проволокой, закрепленной в шаблоне или в станке с ЧПУ.

Газифицируемые модели для литья

С помощью склеивания можно создавать газифицируемые модели для литья деталей больших размеров и практически любой конфигурации. Не является больше сложностью любое количество и глубина выступов и впадин, внутренних полостей и переменных уклонов поверхностей. Не требуется высокое искусство проектировщика и модельщика и многие часы ручного труда. Теперь это — простая последовательность операций.

Классификация применяемых составов для точного литья

Материал можно сгруппировать по нескольким параметрам: основа, тип используемого наполнителя, температурный диапазон запрессовки в пресс-форму, размер линейной усадки.

По первому параметру смеси делят на следующие группы:

  • вещества на базе парафина и других углеводородов;
  • составы с базой из минвоска;
  • сплавы на основе ряда смол естественного происхождения;
  • материалы на основе искусственных смол и восков;
  • металлы с пониженной температурой плавления.

В зависимости от типа используемого наполнителя в пастообразном видемодельные составы делят на несколько групп:

  • без наполнителя;
  • газообразные (обычный воздух);
  • жидкий (обычная обессоленная вода);
  • твердые, нерастворимые (ограниченно растворимые или полностью растворимые) в жидком пластификаторе.

В зависимости от каждого из следующих типов определяется маркировка модельных составов. На практике применяют чаще всего парафиново-стеариновые модельные смеси, имеющие доступную стоимость и хорошие характеристики. Они могут многократно использоваться при условии регенерации после 5-6 циклов. Последняя выполняется серной кислотой, которую добавляют в нагретую до 70-90 градусов смесь с последующим перемешиванием и выдержкой при этой температуре в течение часа. За это время происходит выпадение осадка, который удаляется, а в оставшуюся часть добавляется жидкое стекло. Последнее удаляет остатки серной кислоты, которая выпадает в удаляемый осадок в течение 2-3 часов. Завершающей стадией регенерации модельного состава остается добавление 3-5% свежего стеарина, который частично теряется во время обработки серной кислотой.

Комплекс оборудования для серийного и массового изготовления пеномоделей

№ п/п Наименование оборудования, комплектация Количество
1

Предвспениватель 

-производительность  33 л/час;

— тип бункерный;

— устройство автоматической проверки и коррекции  

  плотности;

— управление программируемым логическим контролером

  PLS и сенсорным экраном;

1 комплект
2

Силоса для хранения и подсушки подвспененных гранул

габаритные размеры: 1000 мм х1000 мм х2000 мм

2 комплекта
3

Модельные автоматы

Выбор типа автомата (горизонтальный или вертикальный) и параметры его модельной оснастки  — по требованию заказчика;

-тип вакуумный;

-управление программируемым логическим  контролером

  PLC и сенсорным экраном;

— время цикла max 240-300 сек

Количество автоматов в зависимости от заданной программы

4 Установка для склейки (для термопластичного клея или холоднотвердеющего клея) Выбор типа установки и их количества – в зависимости от программы
5

Паровой котел  (покупной)

— вид топлива: природный газ или мазут

1 шт
6

Паровой аккумулятор (покупной).

Предназначен для стабилизации параметров пара (давления и температуры)

1 шт
7 Градирня (покупная) 1 шт.
8 Модельная оснастка Количество по согласованию с заказчиком

Выбор исходного материала пенополистирола или сополимера, а также, комплекта модельного оборудования – в зависимости от номенклатуры и количества отливок и согласовываются с заказчиком.

Прием заказчиком оборудования производится у исполнителя с изготовлением моделей и контроля их размеров согласно технической документации.

Для хранения исходного пеноматериала заказчик должен приобрести и установить в модельном отделении необходимое холодильное оборудование, а для контроля качества пеномоделей -набор контрольных измерительных приборов.

Подробная стоимость каждой единицы оборудования и оснастки, а также, сроки их поставки предоставляются по запросу заказчика и подлежат согласованию.

Основные этапы литья по выплавляемым моделям

Принципиально процесс не отличается от классического литья в песчаные смеси, подразумевая заливку в готовую форму расплавленного цветного сплава или стали. Непосредственно литье включает следующие этапы:

  • создание модели;
  • получение формы;
  • получение готовой литейной формы;
  • непосредственно литье.

На первом этапе происходит подготовка пресс-формы, ее заполнение модельным составом и ожидание затвердевания с последующим извлечением. Получение формы включает обсыпку и сушку твердой модели. В дальнейшем происходит удаление модельной массы горячим воздухом, водой или иным методом с дожигом оставшейся массы во время прокаливания. На финальном этапе происходит непосредственно литье с последующим отпуском, удалением форм и литниковой системой, первичной обработкой заготовок дробеструйным методом или сжатым воздухом.

Для получения качественного литья по модельным составам не допускается. На практике это означает, что разбивать форму можно через 5-6 часов. В условиях производства используют вибрационный стол, а затем удаляется литниковая система и при наличии облой. Последнее может использоваться повторно для изготовления деталей без каких-либо ограничений.

Влияние на экологию

Отходы Традиционный метод ЛГМ-процесс
Пыль 50 кг 16
Окись углерода 250 кг
Окись серы 1,5-2 кг 0,2-0,3 кг
Твердые отходы 1200-1500 кг 0,05 — 0,1
Отработанная вода 0,3-0,5 м3

Применение технологий литья по газифицируемым моделям — важный шаг в области охраны окружающей среды. ЛГМ-технологии активно применяются во всем мире.

В традиционном литейном производстве основной источник токсичных веществ, выделяемых в атмосферу, — это связующие материалы и синтетические смолы, используемые при изготовлении стержней и форм. При заливке, вредные вещества выделяются в воздух производственного помещения, и его очистка представляется довольно сложным мероприятием. При ЛГМ-процессе модель для отливки создается из пенополистирола. В процессе выжигания полистирол полностью разлагается на газообразные составляющие. Опоки с моделями для заливки подключены к вакуумной системе, поэтому все вредные газы поступают сразу в систему очистки, практически не попадая в помещения.

Литьё по газифицируемым моделям относится к малоотходному производству. Формованный песок тщательно просевается, подается элеваторами в охладитель, после чего возвращается на формовку. При этом удаляются вредные газы и пыль. Антиприграрные покрытия на водных связующих практически не загрязняют песок и легко отделяются при просеивании и в системе охлаждения. Один-два раза в год песок очищают методом терморегенерации. Для удаления пыли на производствах используются аспирационные установки и циклоны с высокой степенью очистки. Многократное использование песка позволяет добиться минимальных потерь — всего 0,5-1 % (пыль кварцевого песка, остатки краски).
На комплексах литья по газифицируемым моделям используется оборотное водоснабжение плавильных печей. Используемое тепло не утилизируется. Оно используется для обогрева производственных помещений, а также подается в помещения для сушки и хранения полистирольных моделей. Это позволяет значительно снизить внешнее водопотребление и слив отработанной воды в канализацию, а также минимизировать потребление электрической или тепловой энергии, требуемой для обогрева. Это скорее относится к косвенной защите окружающей среды. Водоснабжение не сильно влияет на экологичность производства, но снижение потребления энергии от внешних источников снижает вред, наносимый природе котельными или электростанциями.

Растущая популярность алюминия

Алюминий является вторым по популярности металлом в мире после железа, и его рынок растет в два раза по сравнению с темпом рынка стали, хотя это происходит с гораздо более низкой базой.

Алюминиевые слитки готовы к дальнейшей обработке в литейном цехе.

Алюминий также является самым распространенным металлом на земле, что составляет более 8% от массы ядра Земли, но его трудно дорабатывать по сравнению с железом. По этой причине использование алюминия отстает от других металлических изделий, в то время как для преодоления этих сложностей разрабатываются эффективные и экономичные методы. В середине 1880-х годов были изобретены два разных метода, которые последовательно используются для производства алюминия. В методе Байера используется химический процесс для извлечения алюминия из бокситов (обычная алюминиевая руда). В процессе Холла-Херульта используется электролиз для извлечения алюминия из оксида алюминия или оксида алюминия, полученного в результате процесса Байера.

Между алюминиевой и сталелитейной промышленностью существует много общего. Оба полагаются на извлечение металлов из минеральных руд, происходящих на земной поверхности. Процессы производства обоих энергоинтенсивны и включают заливку жидкого металла в отливки или с использованием машин непрерывного литья. Алюминий и сталь даже конкурируют на аналогичных рынках для автомобильной и аэрокосмической промышленности. Однако существуют существенные различия в обработке и свойствах этих металлов.

Производство и обработка

Большинство бокситов собирается из открытых шахтных операций в виде грязи, а не горной породы. Типичное содержание алюминия в бокситовой руде составляет от 45% до 60%.

Бокситовая руда, из которой извлекается алюминий.

Процесс Байера

Бокситовая руда измельчается и смешивается с каустической содой для получения суспензии, содержащей мелкие частицы руды. Суспензию выдерживают при температуре от 140 до 280 ° С в зависимости от обрабатываемой конкретной руды. За это время алюминий растворяется в растворе каустической соды. Все примеси осаждаются из раствора в остаток, называемый красной грязью. Последним этапом процесса является добавление затравочных кристаллов в раствор каустической соды. Растворенный оксид алюминия присоединяется к этим затравочным кристаллам. Конечным продуктом из процесса Байера является оксид алюминия или оксид алюминия, который имеет вид белого порошка.

Процесс Холла-Херульта

Блок восстановления алюминиевого завода состоит из восстановительных горшков или ячеек, которые соединены последовательно. Каждый горшок изготовлен из стальной оболочки, облицованной углеродом. В каждый горшок выливают расплавленный криолит (фторид-минерал), содержащий оксид алюминия, и углеродные электроды вводят в раствор сверху. Ток проходит между углеродными электродами и углеродной подкладкой горшка. Когда ток проходит через раствор криолита, алюминий отделяется от кислорода, который присоединяется к углероду электродов, образующих газообразный диоксид углерода. Жидкий алюминий собирается на дне горшка.

Мощность для процесса исходит от постоянного тока через электроды. Напряжение поддерживается от 4 до 6 вольт, а генерируемый ток может достигать 4 KA. Мощность, подаваемая от электрического тока, удерживает раствор криолита примерно при 950 ° C.

Жидкий оксид алюминия всасывается из восстановительных горшков с регулярными интервалами в вакуумные ведра, переносится в печь, а затем наливается в слитки в пресс-формах или с помощью машины непрерывной разливки. Полученный через этот процесс алюминий составляет приблизительно 99,8%.

Гость форума
От: admin

Эта тема закрыта для публикации ответов.