Получение металлов и их применение

Алан-э-Дейл       30.03.2022 г.

Содержание драгмета во вторичном сырье

Вторичное сырье благородных металлов по своему химическому составу является сложным многокомпонентным металлургическим сырьем.

Как правило, помимо драгметаллов в ломе и отходах присутствуют сплавы железа, алюминия и меди, стекло, стеклокерамика, стекловолокно, полимеры.

Содержание драгметаллов в различных предметах и устройствах удается определить лишь после их обработки в аффинажной организации, способной очистить золото, платину, палладий и другие металлы до самой высочайшей пробы.

Статус аффинажных организаций присваивается предприятиям, осуществляющим промышленным способом очистку (фр. affinage – очищение, очищать) от примесей благородных металлов и доведение их качества до требований соответствующих стандартов.

Оценку количественного содержания золота, серебра или другого благородного элемента во «вторичке», подготовленной для переработки, нетрудно провести на основании справочных данных, которые имеются для каждого изделия или группы идентичных деталей, либо по клейму с пробой на ломе ювелирного изделия.

Предлагаем вам несколько статей на тему содержания драгметаллов в различных изделиях и их аффинажа:

  1. Содержание драгметаллов в радиодеталях.
  2. Содержание золота в радиодеталях.
  3. Содержание в автомобилях.
  4. Драгметаллы в бытовой и оргтехнике.
  5. Аффинаж радиодеталей.
  6. Аффинаж различных предметов.
  7. Аффинаж золота.

Основные виды сплавов

Самые многочисленные виды сплавов металлов изготавливаются на основе железа. Это стали, чугуны и ферриты.

Сталь — это вещество на основе железа, содержащее не более 2,4% углерода, применяется для изготовления деталей и корпусов промышленных установок и бытовой техники, водного, наземного и воздушного транспорта, инструментов и приспособлений. Стали отличаются широчайшим диапазоном свойств. Общие из них — прочность и упругость. Индивидуальные характеристики отдельных марок стали определяются составом легирующих присадок, вводимых при выплавке. В качестве присадок используется половина таблицы Менделеева, как металлы , так и неметаллы. Самые распространенные из них — хром, ванадий, никель, бор, марганец,  фосфор.

Легированная сталь

Если содержание углерода более 2,4% , такое вещество  называют чугуном. Чугуны более хрупкие, чем сталь. Они применяются там, где нужно выдерживать большие статические нагрузки при малых динамических. Чугуны используются при производстве станин больших  станков и технологического оборудования, оснований для рабочих столов, при отливке оград, решеток и предметов декора. В XIX и в начале XX века чугун широко применялся в строительных конструкциях. До наших дней в Англии сохранились мосты из чугуна.

Чугунные радиаторы

Вещества с большим содержанием углерода, имеющие выраженные магнитные свойства, называют ферритами. Они используются при производстве трансформаторов и катушек индуктивности.

Сплавы металлов на основе меди, содержащие от 5 до 45% цинка, принято называть латунями. Латунь мало подвержена коррозии и широко применяется как конструкционный материал в машиностроении.

Желтая латунь

Если вместо цинка к меди добавить олово, то получится бронза. Это, пожалуй, первый сплав, сознательно полученный нашими предками несколько тысячелетий назад. Бронза намного прочнее и олова, и меди и уступает по прочности только хорошо выкованной стали.

Вещества на основе свинца широко применяются для пайки проводов и труб, а также в электрохимических изделиях, прежде всего, батарейках и аккумуляторах.

Двухкомпонентные материалы на основе алюминия, в состав которых вводят кремний, магний или медь, отличаются малым удельным весом и высокой обрабатываемостью. Они используются в двигателестроении, аэрокосмической промышленности и производстве электрокомпонентов и бытовой техники.

Популярные темы сообщений

  • Правильная осанка

    Правильная осанка у человека, означает, то, что он полностью здоров и не имеет проблем со спинной. Возможными причинами нарушения ее, могут быть вызваны переутомления позвоночника, а также из-за длительного и неправильного положения

  • Графика (что такое графика)

    Графика, в переводе с греческого языка, обозначает рисовать, царапать. Графика — вид изобразительного искусства, в котором изображение предмета выполняется в виде рисунка, на плоскости. Основные выразительным средством являются штрихи,

  • Социализация личности

    Социализация, как термин, не имеет какого-либо конкретного и четкого определения в психологии. Все привыкли к общепринятому определению данного термина, как процесс некого формирования или становления личности,

История открытия

Редкие металлы — относительно новый термин, к которому относятся малоизученные химические элементы. Впервые такое обозначение появилось в 20-х годах прошлого столетия. За рубежом первым термином появился Less Common Metals. Если переводить его дословно — менее обычные металлы.

Резкий скачок добычи, производства редких металлических элементов был зафиксирован после окончания Второй Мировой Войны. Тогда нужно было восстанавливать основные сферы промышленности. Новые химические элементы позволяли создавать инновационные материалы, развивать новые технологии в ускоренном режиме.

Добыча металлов (Фото: Instagram / metinvest)

Внутреннее строение и физические свойства металлов

Металлы — это простые вещества, атомы которых могут только отдавать электроны. Такая особенность металлов связана с тем, что на внешнем уровне этих атомов мало электронов (чаще всего от 1 до 3) или внешние электроны расположены далеко от ядра. Чем меньше электронов на внешнем уровне атома и чем дальше они расположены от ядра, — тем активнее металл (ярче выражены его металлические свойства).

Задание 8.1. Какой металл активнее:

Назовите химические элементы А, Б, В, Г.

Металлы и неметаллы в Периодической системе химических элементов Менделеева (ПСМ) разделяет линия, проведённая от бора к астату. Выше этой линии в главных подгруппах находятся неметаллы (см. урок 3). Остальные химические элементы — металлы.

Задание 8.2. Какие из следующих элементов относятся к металлам: кремний, свинец, сурьма, мышьяк, селен, хром, полоний?

Вопрос. Как можно объяснить тот факт, что кремний — неметалл, а свинец — металл, хотя число внешних электронов у них одинаково?

Существенной особенностью атомов металлов является их большой радиус и наличие слабо связанных с ядром валентных электронов. Для таких атомов величина энергии ионизации* невелика.

Часть валентных электронов металлов, отрываясь от атомов, становятся «свободными». «Свободные» электроны легко перемещаются между атомами и ионами металлов в кристалле, образуя «электронный газ» (рис. 28).

В последующий момент времени любой из «свободных» электронов может притянуться любым катионом, а любой атом металла может отдать электрон и превратиться в ион (эти процессы показаны на рис. 28 пунктирами).

Таким образом, внутреннее строение металла похоже на слоёный пирог, где положительно заряженные «слои» атомов и ионов металла чередуются с электронными «прослойками» и притягиваются к ним. Наилучшей моделью внутреннего строения металла является стопка стеклянных пластинок, смоченных водой: оторвать одну пластинку от другой очень трудно (металлы прочные), а сдвинуть одну пластинку относительно другой очень легко (металлы пластичные) (рис. 29).

Задание 8.3. Сделайте такую «модель» металла и убедитесь в этих свойствах.

Химическая связь, осуществляемая за счёт «свободных» электронов, называется металлической связью.

«Свободные» электроны обеспечивают также такие физические свойства металлов, как электро- и теплопроводность, пластичность (ковкость), а также металлический блеск.

Задание 8.4. Найдите дома металлические предметы.

Выполняя это задание, вы легко найдёте на кухне металлическую посуду: кастрюли, сковородки, вилки, ложки. Из металлов и их сплавов делают станки, самолёты, автомобили, тепловозы, инструменты. Без металлов невозможна современная цивилизация, так как электрические провода также делают из металлов — Cu и Al. Только металлы годятся для получения антенн для радио- и телеприёмников, из металлов делают и лучшие зеркала. При этом чаще используют не чистые металлы, а их смеси (твёрдые растворы) — СПЛАВЫ.

ПРОИСХОЖДЕНИЕ

Небольшой самородок меди

Обычно самородная медь образуется в зоне окисления некоторых медносульфидных месторождений в ассоциации с кальцитом, самородным серебром, купритом, малахитом, азуритом, брошантитом и другими минералами. Массы отдельных скоплений самородной меди достигают 400 тонн. Крупные промышленные месторождения самородной меди вместе с другими медьсодержащими минералами формируются при воздействии на вулканические породы (диабазы, мелафиры) гидротермальных растворов, вулканических паров и газов, обогащенных летучими соединениями меди (например, месторождение озера Верхнее, США).
Самородная медь встречается также в осадочных породах, преимущественно в медистых песчаниках и сланцах.
Наиболее известные месторождения самородной меди — Туринские рудники (Урал), Джезказганское (Казахстан), в США (на полуострове Кивино, в штатах Аризона и Юта).

Способы получения металлов

В зависимости от того, кокой восстановитель используют в металлургическом процессе различают: пиро — ,  гидро, электро —  и биометаллургию. 

Наиболее распространенные способы получения металлов: пирометаллургический и электрометаллургический. Большинство реакций восстановления протекают при высоких температурах (Рис. 2). Так как металлическая связь обладает повышенной прочностью, то выделение металлов в чистом виде из природных соединений проводят при высоких температурах.

Рис. 2. Металлургическое производство

Пирометаллургический способ

Пирометаллургия — получение металлов из руд при высоких температурах при участии восстановителей. В переводе с греческого «пирос» означает «огненный». Используют в качестве восстановителей кокс, диоксид углерода, водород. Применяют активные металлы для получения менее активных.

Пирометаллургия подразделяется на 

  • карботермия, 
  • водородотермия, 
  • металлотермию. 

Карботермия: перевод сульфида металла путем обжига в оксид и дальнейшим восстановлением углем до чистого состояния.

2ZnS + 3O2 = 2ZnO + 2 SO2

ZnO + C = CO + Zn

Руды, состоящие из оксидов и сульфидов железа, подвергают карботермии. Проводят восстановление коксом или диоксидом углерода (угарным газом). Получают сплавы железа — чугун и сталь. Первый содержит больше углерода, а также оксидов серы, фосфора и кремния. Углерод снижает твердость и другие характерные для металлов качества.

Химические реакции, лежащие в основе выплавки чугуна:

  1. C + O2 = CO2↑,
  2. CO2 + C 2CO↑,
  3. 3Fe2O3 + CO = 2Fe3O4+ CO2↑,
  4. Fe3O4 + CO = 3FeO + CO2↑,
  5. FeO + CO = Fe + CO2↑.

Сталь выплавляют в специальных печах — электрических, конвертерных, мартеновских (Рис. 3). При продувании обогащенного кислородом воздуха выгорает избыточный углерод, его содержание уменьшается до 2% и ниже. Этот способ является более экономически применим, т.к. при помощи него получают сталь и чугун, которые широко используются в современной промышленности.

Рис. 3. Пирометаллургия

Восстановлением углем можно получить железо, медь, цинк, кадмий, германий, олово, свинец и другие металлы. В качестве сырья используют медную (Cu2O), оловянную (SnO2), марганцевую (MnO2) руды.

Схема получение железа и хрома (Cr2Fe)O4 + 4C(кокс) = Fe + 2Cr + 4CO↑
Реакция, лежащая в основе выплавки меди Cu2O + C (кокс) = 2Cu + CO↑
Схема производство олова SnO2 + 2C (кокс) = Sn + 2CO↑
Процесс выплавки марганца MnO2 + C(кокс) = Mn + CO2
Схема получения свинца 2PbO + C → Pb + CO↑

Металлы можно извлечь из сульфидных руд. Сначала проводят обжиг, затем — восстановление полученного оксида углем. Схемы обжига цинковой обманки и получение цинка:

  1. 2ZnS +3O2 = 2ZnO + 2SO2↑;
  2. ZnO + C = Zn + CO↑.

Карбонаты тоже прокаливают с углем для получения оксидов и последующего восстановления углем. Схемы обжига сидерита и восстановления оксида железа:

  1. FeCO3 = FeO + CO2↑;
  2. FeO + C = Fe + CO↑.

Водородотермия — производство металлов восстановлением водородом

Достоинством этого металлургического метода является получение очень чистых металлов. Восстановление меди из оксида CuO — пример восстановительных свойств водорода из школьного курса неорганической химии. Схема протекания реакции (Рис 4):

Рис. 4. Восстановление меди водородом

Водородом восстанавливают из оксидов тугоплавкие металлы молибден и вольфрам.

Металлотермия

Проводят восстановление одного металла другим, более химически активным. Этот способ применяют для получения металлов из оксидов и галогенидов.

В зависимости от природы металла-восстановителя различают алюминотермию, или алюмотермию, — восстановление алюминием и магнийтермию — восстановление магнием. 

Схема получение марганца 3MnO2 + 4Al = 3Mn + 2Al2O3
Процесс выплавки хрома Cr2O3 + 2Al → 2Cr + Al2O3
Схема получение кальция 4CaO+ 2Al= 2Ca+ (CaAl2)O4

Силикотермия — восстановление металлов кремнием. Процесс протекает согласно схеме: 2MgO + Si → 2Mg + SiO2.

Классификация металлов

В природе существует несколько видов металлов, которые отличаются по своим свойствам, характеристикам и внешнему виду. Каждая из разновидностей по-разному ведёт себя при взаимодействии с другими материалами или под воздействием факторов окружающей среды.

Виды металлов

Черные

В эту группу входит железо и сплавы на его основе. Характерные особенности чёрных металлов:

  • высокая плотность;
  • температура плавления гораздо выше чем у представителей других групп;
  • цвет — тёмно-серый.

К представителям группы чёрных металлов относятся: вольфрам, хром, кобальт, молибден, железо, никель, титан, марганец, уран, нептуний, плутоний и другие. Используются они в различных отраслях и обладают разными свойствами. Популярными считаются сталь и чугун.

В состав черных металлов входит не только железо, но и различные примеси к которым относится сера, фосфор или кремний. В своём составе они содержат разное количество углерода.

Цветные

Представители этой группы более востребованы. Связано это с тем, что цветные металлы применяют в большем количестве отраслей. Их могут использовать в машиностроении, передовых технологиях, радиоэлектронике, металлургии. Ключевые особенности цветных металлов:

  • низкая температура плавления;
  • большой цветовой спектр;
  • хорошая пластичность.

Из-за низкой прочности представителей цветной группы их используют в связке с разными видами более плотных материалов. Представители этой группы: магний, алюминий, никель, свинец, олово, цинк, серебро, платина, родий, золото и другие.

Мягкие

Можно выделить отдельные виды металлов, которые будут относиться к группе твёрдых и мягких. В качестве мягких выступают:

  1. Алюминий — обладает устойчивостью к коррозии, легким весов, хорошей пластичностью. Используется в электропромышленности, при строительстве самолётов и изготовлении посуды.
  2. Магний — это лёгкий материал, который подвержен воздействию коррозийных процессов. Чтобы избавиться от этого недостатка, его используют в сплавах с другими материалами.

Это ключевые представители группы мягких металлов.

Твердые

Популярными материалами этой группы являются:

  1. Вольфрам — считается самым тугоплавким металлом. Дополнительно к этому, он является одним из самых прочных. Стойкий к химическим воздействиям.
  2. Титан — чем меньше вкраплений других материалов в этом металле, тем прочнее он становится. Используется при строительстве машин, ракет, самолётов, кораблей, а также в химической промышленности. Он хорошо обрабатываются под давлением, не поддается воздействию коррозийных процессов.
  3. Уран — ещё один металл, считающийся одним из самых прочных в мире. Радиоактивен и используется в различных направлениях промышленности.

Представители «твёрдой группы» хуже поддаются обработке и используются в меньшем количестве направлений деятельности человека, чем мягкие.

Структура металлов

Кристаллическая структура сплавов

Вакансия в кристаллической решётке

Образование дендритов

См. также: Металловедение

Ни один металл невозможно приготовить в абсолютно чистом состоянии. Технически «чистые» металлы могут содержать до нескольких процентов примесей, и если эти примеси являются элементами с низким атомным весом (например, углерод, азот или кислород), то в пересчёте на атомные проценты содержание этих примесей может быть очень большим. Первые небольшие количества примесей в металле обычно входят в кристалл в виде твёрдого раствора. Можно выделить два главных типа твёрдых растворов:

  • первый, когда атомы примеси намного меньше атомов металла-растворителя, растворённые атомы располагаются в решётке растворителя по междоузлиям, или «пустотам». Образование таких твёрдых растворов — твёрдых растворов внедрения — почти всегда сопровождается расширением решётки растворителя, и в окрестности каждого растворённого атома имеется локальное искажение решётки;
  • второй, когда атомы примеси и растворителя имеют приблизительно одинаковые размеры, образуется твёрдый раствор замещения, в котором атомы растворённого элемента замещают атомы растворителя, так что атомы обоих сортов занимают места в узлах общей решётки. В таких случаях тоже вокруг каждого растворённого атома имеется искажённая область, а будет ли при этом решётка расширяться или сжиматься, зависит от относительных размеров атомов растворителя и растворённого вещества.

Для большей части металлов наиболее важными элементами, образующими твёрдые растворы внедрения, являются водород, бор, углерод, азот и кислород. Присутствие дислокаций всегда приводит к появлению аномально больших или малых межатомных расстояний. В присутствии примесей каждая дислокация окружена «атмосферой» примесных атомов. Примесные атмосферы «закрепляют» дислокации, потому что в результате перемещения дислокаций будет образовываться новая конфигурация с повышенной энергией. Границы между кристаллами также являются областями с аномальными межатомными расстояниями и, следовательно, тоже растворяют примесные атомы легче, чем неискажённые области кристаллов.

При увеличении содержания примесей растворённые атомы входят и в основную массу кристалла, однако всё ещё имеется избыток примеси по границам зёрен и вокруг дислокаций. Когда содержание примеси превышает предел растворимости, появляется новая фаза, которая может представлять собой или растворённое вещество, или промежуточную фазу, или соединение. В таких случаях границы между фазами могут быть двух родов. В общем случае кристаллическая структура частичек примеси слишком отлична от структуры металла-растворителя, поэтому решётки двух фаз не могут переходить одна в другую, образуя непрерывную структуру. В таких случаях на границах раздела фаз образуются слои с нерегулярной (искажённой) структурой. С образованием границ связано появление свободной поверхностной энергии, однако энергия деформации решётки растворителя относительно невелика. В таких случаях говорят, что эти частицы выделяются некогерентно.

B ряде случаев межатомные расстояния и кристаллическая структура металла-растворителя и частичек примеси таковы, что некоторые плоскости могут соединяться между собой, образуя непрерывную структуру. Тогда говорят, что частицы второй фазы выделяются когерентно и, поскольку сопряжение решёток никогда не бывает абсолютно точным, вокруг границы образуется сильно напряжённая область. В тех случаях, когда энергия деформации слишком велика для этого, соседние кристаллы могут контактировать таким образом, что при этом в пограничных слоях возникают области упругой деформации, а на самой границе раздела — дислокации. В таких случаях говорят, что частицы выделяются полукогерентно.

При повышении температуры вследствие увеличения амплитуды колебаний атомов может образоваться дефект кристаллической решётки, который называют вакансия или «дырка». Диффузия вакансий является одним из механизмов образования дислокаций.

Как правило, кристаллизация металла происходит путём переохлаждения с образованием дендритной структуры. По мере разрастания дендритные кристаллы соприкасаются, при этом образуются различные дефекты структуры. В большинстве случаев металл затвердевает так, что первая порция кристаллов содержит меньше примесей, чем последующие. Поэтому, как правило, примеси концентрируются на границах зёрен, образуя стабильные структуры.

3. Микроскопическое строение

Характерные свойства металлов можно понять, исходя из их внутреннего строения. Все они имеют слабую связь электронов внешнего энергетического уровня (другими словами, валентных электронов) с ядром. Благодаря этому созданная разность потенциалов в проводнике приводит к лавинообразному движению электронов (называемых электронами проводимости) в кристаллической решётке. Совокупность таких электронов часто называют электронным газом. Вклад в теплопроводность, помимо электронов, дают фононы (колебания решётки). Пластичность обусловлена малым энергетическим барьером для движения дислокаций и сдвига кристаллографических плоскостей. Твёрдость можно объяснить большим числом структурных дефектов (междоузельные атомы, вакансии и др.).

Из-за лёгкой отдачи электронов возможно окисление металлов, что может приводить к коррозии и дальнейшей деградации свойств. Способность к окислению можно узнать по стандартному ряду активности металлов. Этот факт подтверждает необходимость использования металлов в комбинации с другими элементами (сплав, важнейшим из которых является сталь), их легирование и применение различных покрытий.

Для более корректного описания электронных свойств металлов необходимо использовать квантовую механику. Во всех твёрдых телах с достаточной симметрией уровни энергии электронов отдельных атомов перекрываются и образуют разрешённые зоны, причём зона, образованная валентными электронами, называется валентной зоной. Слабая связь валентных электронов в металлах приводит к тому, что валентная зона в металлах получается очень широкой, и всех валентных электронов не хватает для её полного заполнения.

Принципиальная особенность такой частично заполненной зоны состоит в том, что даже при минимальном приложенном напряжении в образце начинается перестройка валентных электронов, т. е. течёт электрический ток.

Та же высокая подвижность электронов приводит и к высокой теплопроводности, а также к способности зеркально отражать электромагнитное излучение (что и придаёт металлам характерный блеск).

3.1. Некоторые металлы

Осмий

Алюминий

Барий

  1. Щелочные:
    • Литий
    • Натрий
    • Калий
    • Рубидий
    • Цезий
    • Франций
  2. Щёлочноземельные:
    • Кальций
    • Стронций
    • Барий
    • Радий
  3. Переходные:
    • Титан
    • Железо
    • Платина
    • Медь
    • Цинк
    • Золото
    • Серебро
    • Палладий
    • Ртуть
    • Никель
    • Кобальт
    • Вольфрам
  4. Лёгкие:
    • Алюминий
    • Галлий
    • Свинец
    • Олово
  5. Другие:
    • Бериллий
    • Магний

3 Общие свойства металлов

Все
металлы и сплавы характеризуются
физическими, химическими, механическими
и технологическими свойствами.

К физическим
свойствам металлов относятся: цвет,
удельный вес, температура плавления,
электропроводность, теплопроводность,
расширение металла при нагреве и
магнитные свойства. Например, температура
плавления сплавов имеет большое значение
в литейном производстве.

К химическим
свойствам металлов относятся: окисляемость,
растворяемость и коррозийная стойкость.
Все перечисленные свойства важны для
выбора литейных сплавов, применяемых
для отливок деталей, работающих в
окислительных средах (колосниковые
решетки печей, насосы для перекачивания
кислот).

К механическим
свойствам металлов относятся: прочность,
твердость, упругость, вязкость и
пластичность. Эти свойства металлов и
сплавов имеют большое значение при
использовании их в машиностроении.

Эксплуатационные
свойства определяют в зависимости от
условий работы машины специальными
испытаниями. Одним
из важнейших эксплуатационных свойств
является износостойкость.

Износостойкость
— свойство материала оказывать
сопротивление износу, т. е. постепенному
изменению размеров и формы тела вследствие
разрушения поверхностного слоя изделия
при трении. Испытание металлов на износ
проводят на образцах в лабораторных
условиях, а деталей — в условиях реальной
эксплуатации. При испытаниях образцов
моделируются условия трения, близкие
к реальным. Величину износа образцов
или деталей определяют различными
способами: измерением размеров,
взвешиванием образцов и другими методами.

К
эксплуатационным свойствам следует
также отнести хладостойкость, жаропрочность
и антифрикционность.

Технологические
свойства характеризуются жидкотекучестью,
прокаливаемостью, ковкостью, свариваемостью
и обрабатываемостью резанием. Эти
свойства металлов и сплавов играют
важную роль в машиностроении.

К технологическим
свойствам металлов относятся также
литейные свойства металлов и сплавов,
характеризующие способность их хорошо
заполнять все очертания формы и
образовывать плотные отливки при
затвердевании. При недостаточной
жидкотекучести в отливке, особенно в
тонких ее частях, образуются спаи и
недоливы. При склонности металлов и
сплавов к большой усадке во время
затвердевания (кристаллизации) появляются
усадочные раковины и большие внутренние
напряжения.

Все
перечисленные свойства в необходимых
случаях определяются испытанием металлов
и сплавов в лабораториях с помощью
специальных приборов и установок.

СВОЙСТВА

Кристаллы самородной меди, Верхнее озеро, округ Кинави, Мичиган, США. Размер 12 х 8,5 см

Медь — золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет.

Наряду с осмием, цезием и золотом, медь — один из четырёх металлов, имеющих явную цветовую окраску, отличную от серой или серебристой у прочих металлов. Этот цветовой оттенок объясняется наличием электронных переходов между заполненной третьей и полупустой четвёртой атомными орбиталями: энергетическая разница между ними соответствует длине волны оранжевого света. Тот же механизм отвечает за характерный цвет золота.

Медь обладает высокой тепло- и электропроводностью (занимает второе место по электропроводности среди металлов после серебра). Удельная электропроводность при 20 °C: 55,5-58 МСм/м. Медь имеет относительно большой температурный коэффициент сопротивления: 0,4 %/°С и в широком диапазоне температур слабо зависит от температуры. Медь является диамагнетиком.

Существует ряд сплавов меди: латуни — с цинком, бронзы — с оловом и другими элементами, мельхиор — с никелем и другие.

Области применения

Природой золото и другие драгметаллы наделены уникальными потребительскими качествами, за которые золотые изделия или серебряные поделки так дороги их владельцам.

Не зря же термин «драгоценный» трактуется в словарях русского языка двояко — как «ценный, дорого стоящий», так и «милый, дорогой, очень нужный».

Поэтому уже с середины 19 столетия платина, золото, серебро, иридий и другие благородные элементы становятся предметом промышленного применения.

Для каждого материала сложилась своя специфическая технологическая ниша, в соответствии с которой установилась его определенная рыночная стоимость, учитывающая потребность в нем и сложности выделения из природного сырья.

Ниже приведены краткие сведения по применению благородных металлов и примерные цены в руб./грамм.:

  1. Золото используется для изготовления ювелирных украшений и стоматологических протезов, в качестве припоя или сварочного материала при изготовлении термопар, как гальваническое покрытие плат, контактов, разъемов при изготовлении изделий для всех отраслей промышленности. С развитием нанотехнологий, телекоммуникаций, авиакосмической промышленности и ядерной энергетики область применения золота существенно расширилась. Золото присутствует в мишенях для ядерных исследований, применяется в специальных оболочках для нейтронных бомб и т.п. Стоимость золота установлена 2570,98 руб./грамм.
  2. Серебро применяется в контактах электротехнических изделий, в составе медносеребряных припоев, в составе различных сплавов, до сих пор используется в фотографии. Большое количество серебра идет на изготовление аккумуляторных батарей высокой энергоплотности (серебряно-цинковые и серебряно-кадмиевые) и в качестве добавок к свинцу для тоководов свинцовых аккумуляторов. Зеркала с серебряным покрытием превосходят по отражающим качествам аналоги с алюминиевым покрытием. Стоимость серебра установлена 30,41 руб./грамм.
  3. Платина по-прежнему конкурирует с золотом в производстве ювелирных украшений, незаменима для изготовления термостойкой химической лабораторной посуды, популярна в металлургии как легирующая добавка. Гальванотехника, нагревательные элементы, термометры сопротивления, контакты реле — везде присутствует платина. Стоимость платины установлена 1756,73 руб./грамм.
  4. Родий применяется для отделки ювелирных изделий, при изготовлении термопар и детекторов нейтронов для ядерной техники. Его термостойкие свойства используются в фильерах для стеклонитей и термопарах, а химическая инертность учтена в технологии производства азотной кислоты. Стоимость родия составляет 5406,96 руб./грамм.
  5. Палладий, осмий, иридий и рутений успешно применяются в качестве катализаторов для различных технологических процессов в химической промышленности, при изготовлении измерительных датчиков, для нанесения специальных покрытий в изделиях оборонной и космической промышленности, в телекоммуникационных системах. Металлы платиновой группы незаменимы для изготовления технологического оборудования, эксплуатируемого в агрессивных средах. Коррозионностойкие жаропрочные сплавы рутения с иридием и платиной являются материалом для фильер под стекловолокно и вискозу. Очень популярны авторучки представительского класса, у которых на пишущие «вечные» перья в соответствии с их названием нанесены напайки из сплавов осмия с палладием и платиной.

Для платиноидов, как нередко называют благородные элементы платиновой группы, Центробанком РФ установлены следующие цены:

  • палладий – 2220,49 руб./грамм;
  • осмий – 854,86 руб./грамм;
  • иридий – 3120,22 руб./грамм;
  • рутений – 559, 93 руб./грамм.

Более подробно о ценах, а также о способах сдачи драгметаллов, будь то аффинированный с радиодеталей металл или лом украшений, можно прочесть здесь.

Понятие о металлургии

Металлургия — получение металлов из руд — один из древнейших видов человеческой деятельности. Еще во втором тысячелетии до н. э. в Египте умели выплавлять железо из железной руды. Так называемый железный век пришел на смену бронзовому, тот, в свою очередь, наступил после каменного.

Получают металлы из рудных полезных ископаемых. Например, халькопирит или медный колчедан — сырье для производства железа, меди и серы (Рис. 1). Химическая формула минерала CuFeS2. Металлы в составе других руд находятся в виде оксидов или солей неорганических кислот, химически связанных катионов.

Рис. 1. Халькопирит

Суть металлургического процесса заключается в восстановлении положительных ионов до свободных атомов металла. Используют в качестве источников электронов углерод и его соединения, водород, металлы. В процессе восстановления катионы получают недостающие электроны. Происходит восстановление электронных оболочек металла. Схема процесса:

Ме+n + ne- → Me, где

  • Ме+n — металл в окисленной форме;
  • +n — степень окисления;
  • ne- — количество присоединяемых электронов;
  • Ме — металл в восстановленной форме.
Гость форума
От: admin

Эта тема закрыта для публикации ответов.