Металлы. свойства металлов

Алан-э-Дейл       07.09.2022 г.

4.1 Сплавы на основе магния

Достоинством магниевых сплавов является высокая удельная прочность. Предел прочности магниевых сплавов достигает 250-400 МПа при плотности менее 2 грамм на кубический сантиметр. Сплавы в горячем состоянии хорошо куются, прокатываются и прессуются. Магниевые сплавы хорошо обрабатываются резанием (лучше, чем стали, алюминиевые и медные сплавы), хорошо шлифуются и полируются. Удовлетворительно свариваются контактной и дуговой сваркой в среде защитных газов.

К недостаткам магниевых сплавов наряду с низкой коррозионной стойкостью и малым модулем упругости следует отнести плохие литейные свойства, склонность к газонасыщению, окислению и воспламенению при их приготовлении.

По механическим свойствам магниевые сплавы подразделяют на сплавы невысокой и средней прочности, высокопрочные и жаропрочные, по склонности к упрочнению с помощью термической обработки – на упрочняемые и неупрочняемые.

Деформируемые магниевые сплавы. В сплавах МА1 и МА8 основным легирующим элементом является марганец. Термической обработкой эти сплавы не упрочняются, обладают хорошей коррозионной стойкостью и свариваемостью. Сплавы МА2-1 и МА5 относятся к системе Mg-Al-Zn-Mn. Алюминий и цинк повышают прочность сплавов, придают хорошую технологическую пластичность, что позволяет изготовлять из них кованные и штампованные детали сложной формы (крыльчатки и жалюзи капота самолета). Сплавы системы Mg-Zn, дополнительно легированные цирконием (МА14), кадмием, редкоземельными металлами (МА15, МА19 и др.) относят к высокопрочным магниевым сплавам. Их применяют для несвариваемых сильно нагруженных деталей (обшивки самолетов, деталей грузоподъемных машин, автомобилей, ткацких станков и др.).

Литейные магниевые сплавы. Наибольшее применение нашли сплавы системы Mg-Al-Zn (МЛ5, МЛ6). Они широко применяются в самолетостроении (корпуса приборов, насосов, коробок передач, фонари и двери кабин и т.д.), ракетной технике (корпуса ракет, обтекатели, топливные и кислородные баки, стабилизаторы), конструкциях автомобилей, особенно гоночных (корпуса, колеса, помпы и др.), в приборостроении (корпуса и детали приборов). Вследствие малой способности к поглощению тепловых нейтронов магниевые сплавы используют в атомной технике, а благодаря высокой демпфирующей способности – при производстве кожухов для электронной аппаратуры.

Более высокими технологическими и механическими свойствами обладают сплавы магния с цинком и цирконием (МЛ 12), а также сплавы, дополнительно легированные кадмием (МЛ8), редкоземельными металлами (МЛ9, МЛ10). Данные сплавы применяют для нагруженных деталей самолетов и авиадвигателей (корпусов компрессоров, картеров, ферм шасси, колонок управления и др.).

Магниевые сплавы подвергаются следующим видам термической обработки: Т1 – старение, Т2 – отжиг, Т4 – гомогенизация и закалка на воздухе, Т6 – гомогенизация, закалка на воздухе и старение, Т61 – гомогенизация, закалка в воду и старение.

Заключение

Цветные металлы и их сплавы нашли широкое применение в строительстве благодаря своей прочности, легкости, высокой антикоррозийной стойкости. Они подразделяются на легкие (в большинстве своем на основе алюминия) и тяжелые (на основе меди, латуни, олова и т.п.).

Цветная металлургия является одной из наиболее конкурентоспособных отраслей промышленности России, причем российские компании в ряде подотраслей (алюминиевой, никелевой, титановой) входят в группу мировых лидеров. Достижения участников рынка в мировом масштабе стало возможным благодаря активной инвестиционной политике предприятий отрасли. Так, например, объем инвестиций в 2006 году по сравнению с показателями 2000 года увеличился в 2,5 раза, и составляет 80 млрд. руб., а объем иностранных инвестиций вырос почти в 10 раз, достигнув 4,5 млрд. долл. При этом суммарный объем инвестиций в строительство и реконструкцию металлургических мощностей составляет в 2007-2010 гг. более 220 млрд. руб.

Список использованных источников

1. Колачев Б.А., Ливанов В.А., Елагин В.И. Металловедение и термическая обработка цветных металлов и сплавов. – М.: Металлургия, 1981. – 416 с.

2. Материаловедение: Учебник для высших технических учебных заведений / Б.Н. Арзамасов, И.И.Сидорин, Г.Ф.Косолапов и др.; под общ. ред. Б.Н. Арзамасова. // 2-е изд. – М.: Машиностроение, 1986. – 384 с.

3. Гуляев А.П. Металловедение. – М.: Металлургия, 1986. – 544 с.

4. Материалы будущего: Пер. с нем./ Под ред. А. Неймана. – Л.: Химия, 1985. – 240 с.

5. Венецкий С.И. Рассказы о металлах. – М.: Металлургия, 1985. – 240с.

Популярные темы сообщений

  • Экологические проблемы использования тепловых машин

    Превращать энергию тепла в механическую энергию приспособились еще двести лет назад. Чтобы создавать механическую энергию, всегда есть потребность в большом количестве топлива. К тому топливо сгорает в камере сгорания и образуется

  • Живые клетки

    Все мы живые существа, будь то человек, насекомое, растение, и все мы, состоим из многочисленных «кирпичиков» под названием клетка. Наше тело состоит из миллиардов мелких частиц, где каждая клетка это маленький, активно функционирующий живой

  • Мышь

    Миши — большое семейство из класса млекопитающих, представители группы грызунов. В процессе эволюции тело мыши приспособились к её непосредственному образу жизни. Передние лапки очень хорошо развиты к рытью нор,

Популярные темы сообщений

  • Правильная осанка

    Правильная осанка у человека, означает, то, что он полностью здоров и не имеет проблем со спинной. Возможными причинами нарушения ее, могут быть вызваны переутомления позвоночника, а также из-за длительного и неправильного положения

  • Графика (что такое графика)

    Графика, в переводе с греческого языка, обозначает рисовать, царапать. Графика — вид изобразительного искусства, в котором изображение предмета выполняется в виде рисунка, на плоскости. Основные выразительным средством являются штрихи,

  • Социализация личности

    Социализация, как термин, не имеет какого-либо конкретного и четкого определения в психологии. Все привыкли к общепринятому определению данного термина, как процесс некого формирования или становления личности,

Сферы использования

Электротехника

Уникальные свойства благородных металлов позволяют защитить электрические контакты от окисления и перегорания, что делает их надежными и безотказными при использовании в электротехнике. Сплавы многих драгметаллов используют в высокоточных приборах и в электронике. Соли серебра (йодид серебра, бромид серебра, хлорид серебра) используют в производстве светочувствительных элементов. Припои из этих драгоценных элементов используют в изготовлении ответственных электротехнических устройств, где требуется прочность и надежность.

Многие редкие элементы используют в производстве нагревательных элементов, термопар и т. д.

Ювелирная промышленность

Все благородные сплавы используют ювелиры. Из них делают изящные серьги и красивые кольца, прелестные браслеты и цепочки, крестики и портсигары, оправы для очков и другие изделия. Ювелирам с помощью добавления в сплавы определенных металлов удается добиться повышения эксплуатационных свойств украшений.

Что такое драгоценные металлы для ювелиров? Ювелиры ценят не только красивый блеск и цвет материалов, но уникальные свойства драгоценных металлов. В частности, то, что они почти не вступают в реакцию с организмом человека, в результате чего, в основном, не вызывают аллергий и кожных заболеваний.

Кроме того, благородные металлы в виде ювелирных изделий долго радуют своих владельцев и часто передаются по наследству из поколения в поколение.

Химия

Свойства драгоценных сплавов, такие как, стойкость к агрессивным веществам и каталитические способности, делают их незаменимыми в химии. Из них делают специальное оборудование и посуду для щелочей и кислот. Благодаря уникальным каталитическим свойствам, часть этих элементов используют в производстве различных веществ (бензин, ароматические вещества и т. д.).

Автомобилестроение

Для систем выхлопа газов изготавливают катализаторы. Благородные металлы, которые используются при изготовлении автомобильных деталей, позволяют эффективно нейтрализовать вредные химические соединения. Для таких целей, в основном, используют родий, платину и палладий.

Медицина

Благородные металлы используют в производстве хирургических и прочих инструментов, разнообразных деталей для оборудования. А также некоторые металлы применяют в стоматологии для изготовления протезов. Многие соединения этих драгоценных элементов входят в составы лекарственных препаратов, что можно уточнить в справочнике лекарственных средств.

Космос

Драгоценные сплавы необходимы для строительства космических аппаратов, так как только они могут обеспечить их надежность и безотказность, а также именно им под силу справиться с разными перегрузками.

Стекольная промышленность

Драгоценные материалы нашли применение и в стекольной промышленности, в частности, из них изготавливают емкости для варки стекла. Их используют в зеркалах для лазеров.

Банковская сфера

Благородные металлы, в частности, золото и серебро в древние времена использовали в изготовлении денег. Серебро постепенно утратило актуальность.

Сегодня по-прежнему из драгоценных элементов изготавливают монеты, а также из них выливают инвестиционные банковские слитки. Это позволяет людям выгодно вкладывать свои капиталы, так как обычная валюта постоянно обесценивается, а слитки и монеты всегда в цене. Сегодня каждый может вложить свои накопления в драгметаллы высшей пробы. К тому же, сегодня многие финансовые организации предлагают гражданам открыть специальные металлические счета.

Делать капиталовложения в благородные элементы очень выгодно, так как в длительной перспективе, владелец можно получить внушительную прибыль. У металлических счетов есть один недостаток — это отсутствие страхования вклада, что сулит клиенту банка большой риск. В заключение приведем список инвестиционных драгоценных металлов:

Металл Цена(руб.)
Золото 2303,3
Серебро 31,55
Платина 1715
Палладий 1467

Свойства сплавов

Свойства, которыми обладают металлические сплавы, подразделяются на:

  1. Структурно — нечувствительные. Они обуславливаются свойствами компонентов, и их процентным содержанием. К ним относятся :
    • плотность;
    • температура плавления;
    • тепловые и упругие характеристики;
    • коэффициент термического расширения;
  2. структурно — чувствительные. Определяются свойствами элемента — основы.
  3. https://www.youtube.com/watch?v=qgzo40bfL1o
  4. Все сплавные материалы в той или иной мере проявляют характерные металлические свойства:
    • блеск;
    • пластичность;
    • теплопроводность;
    • электропроводность.
  5. Кроме того, свойства подразделяют на:
    • Химические, определяемые взаимоотношениями материала с химически активными веществами.
    • Механические, определяемые взаимодействием с другими физическими телами.
  6. Основными характеристиками сплавных материалов, влияющими на их пригодность для применения в той или иной инженерной конструкции, являются:
    • Прочность-характеристика силы противостояния механическим нагрузкам и разрушению.
    • Твердость-способность к сопротивлению внедрению в материал твердых тел.
    • Упругость-возможность восстановить исходную форму тела после деформации, вызванной внешней нагрузкой.
    • Пластичность — свойство, обратное упругости. Определяет способность материала к изменению формы тела без его разрушения под приложенной нагрузкой и сохранения этой новой формы.
    • Вязкость — способность сопротивляться быстро возрастающим (ударным) нагрузкам

Строение

Вне зависимости от активности все металлы имеют общее строение. Атомы в простом металле расположены не хаотично, как в аморфных веществах, а упорядоченно – в виде кристаллической решётки. Удерживает атомы в одном положении металлическая связь.

Такой вид связи осуществляется за счёт положительно заряженных ионов, находящихся в узлах кристаллической ячейки (единицы решётки), и отрицательно заряженных свободных электронов, которые образуют так называемый электронный газ. Электроны отделились от атомов, превратив их в ионы, и стали перемещаться в решётке хаотично, скрепляя ионы вместе. Без электронов решётка бы распалась за счёт отторжения одинаково заряженных ионов.

Различают три типа кристаллической решётки. Кубическая объемно-центрированная состоит из 9 ионов и характерна хрому, железу, вольфраму. Кубическая гранецентрированная включает 14 ионов и свойственная свинцу, алюминию, серебру. Из 17 ионов состоит гексагональная плотноупакованная решётка цинка, титана, магния.

Рис. 2. Виды кристаллических решёток.

2.2 Литейные алюминиевые сплавы

Наиболее широко
распространены сплавы системы Al-Si- силумины.

Силумин имеет сочетание
высоких литейных и механических свойств, малый удельный вес. Типичный силумин
сплав АЛ2 (АК12) содержит 10-13% Si, Подвергается закалке и старению (АК7
(АЛ9), АК9 (АЛ4).

3. Цинк и
его сплавы

Цинк – вязкий металл
голубовато-серого цвета. Металл с
небольшой температурой плавления (419 градусов С) и высокой плотностью (7,1
г/см3). Прочность цинка низкая (150 МПа) при высокой пластичности.

Цинк применяют для горячего и
гальванического оцинкования стальных листов, в полиграфической промышленности,
для изготовления гальванических элементов. Его используют как добавку в сплавы,
в первую очередь в сплавы меди (латуни и т.д.), и как основу для цинковых
сплавов, а также как типографский металл.

В зависимости от чистоты цинк
делится на марки ЦВ00 (99,997% Zn), ЦВ0 (99,995% Zn), ЦВ (99,99% Zn), Ц0А
(99,98% Zn), Ц0 (99,975% Zn), Ц1 (99,95% Zn), Ц2 (98,7% Zn), ЦЗ (97,5% Zn).

Цинковые сплавы широко применяются в машиностроении и разделяются на
сплавы для литья под давлением, в кокиль, для центробежного литья и на
антифрикционные сплавы. Основными легирующими компонентами цинковых сплавов
являются алюминий, медь и магний. Отливки из цинковых сплавов легко полируются
и воспринимают гальванические покрытия.

Состав, свойства и применение
некоторых цинковых сплавов:

–  
ЦА4 содержит 3.9-4.3%Al,
0,03-0,06% Mg, временное сопротивление 250-300 МПа, пластичность 3-6%,
твердость 70-90HB). Применяется при литье под давлением деталей, к которым
предъявляются требования стабильности размеров и механических свойств.

–  
ЦАМ10-5Л содержит 9,0-12,4%Al,
4,0-5,5% Cu, 0,03-0,06% Mg, временное сопротивление не менее 250 МПа,
пластичность не менее 0,4%, твердость – не менее 100HB. Из сплава изготавливают
подшипники и втулки металлообрабатывающих станков, прессов, работающих под
давлением до 200-10000 Па.

–  
ЦАМ9-1.5 содержит 9,0-11,0%Al,
1,0-2,0%Cu, 0,03-0,06% Mg, временное сопротивление не менее 250 МПа,
пластичность не менее 1%, твердость не менее 90HB. Сплав применяют для
изготовления разных узлов трения и подшипников подвижного состава.

4. Магний и его сплавы

Магний – металл серебристо-белого цвета. Температура плавления магния 650°С. Кристаллическая
решетка гексагональная. Отличается низкой
плотностью (1,74 г/см3), хорошей обрабатываемостью резанием, способностью
воспринимать ударные и гасить вибрационные нагрузки.

В зависимости от содержания
примесей установлены следующие марки магния: Мг96 (99,96% Mg), Мг95 (99,95%
Mg), Мг90 (99,90% Mg), магний высокой чистоты (99,9999% Mg).

Магний химически активный металл,
легко окисляется на воздухе. Чистый магний из-за низких механических свойств
(временное сопротивление 100-190 МПа, относительное удлинение 6-17%, твердость
30-40НВ) как конструкционный материал практически не применяют. Его используют
в пиротехнике, в химической промышленности для синтеза органических соединений,
в металлургии различных металлов и сплавов как раскислитель, восстановитель и
легирующий элемент.

Общая характеристика

Металлами называют группу элементов, в виде простых веществ, которые обладают металлическими свойствами (пластичность, ковкость, блеск, электронная проводимость и т. д.)

Основное отличие элементов-металлов – они обладают только восстановительными свойствами, а в реакциях могут только окисляться. В соединениях они могут иметь только положительные степени окисления как в элементарных положительно заряженных ионах, так и в сложных ионах, где они образуют положительные центры.

Рис. 1. Список металлов.

Как правило, на внешнем уровне элементов металлов находится небольшое число электронов (1-3), значения электроотрицательности невысокие. К металлам относятся все s-элементы (кроме водорода и гелия), d- и f-элементы, а также p-элементы под чертой бор-астат. Для типичных металлов характерен большой размер атомов, что способствует легкости отдачи валентных электронов. Образующиеся положительные ионы устойчивы, так как имеют завершенную внешнюю электронную оболочку.

Современная добыча драгоценных металлов

В современное время наиболее ценным металлом считается золото. Именно его добыче уделяется наибольшее количество ресурсов. Первые «золотые жилы» были освоены на территории Африки, Азии и Америки.

Сегодня золото добывается в Южной Америке, Австралии и Китае. Россия является одной из наиболее масштабных золотодобывающих стран и занимает четвертое место в мире. Добыча ведется 16 компаниями в Магадане, Амурской области, Хабаровской области, в Красноярском крае, в Иркутской области и на Чукотке.

Методы добычи

До тех пор, пока не была придумана современная технология добычи драгоценных металлов, они добывались вручную. И сказать, что это крайне трудоемкий процесс, значит, ничего не сказать.

Итак, современные процессы золотодобычи:

  • Просеивание. Такой вид добычи золота был популярен во времена «золотой лихорадки» в Америке. Этот метод требовал больших усилий, терпения и навыков. Основными инструментами были сита, ведра с решетками на дне или мешки. Для того, чтобы найти хоть каплю золота человек заходил в реку по пояс, зачерпывал воду и выливал ее на сито и в ведро с решетчатым дном. Таким образом, на его поверхности оставались крупные камни и золотые частицы. При этом сито или решетчатое дно нужно было постоянно удерживать на поверхности, чтобы вымыть ненужные камни, песок и воду и оставить лишь частицы драгоценного металла. Сегодня данный метод редко используется.
  • Добыча из золотоносной руды. Это также ручной способ добычи. Здесь инструментами служили лопата, молоток для раздробления руды и кирка. Данный способ предполагает лазанье по горам, рытье грунта, траншей и шахт. Такая добыча велась преимущественно на территории России.
  • Промышленный метод. Благодаря развитию науки и открытию определенных химических соединений, скорость добычи значительно увеличилась, а также стала применяться мелкая и крупная техника. Этот процесс ведется автоматически и практически не требует человеческого внедрения.

Промышленная добыча в свою очередь делится на:

  1. Альмагальмирование. Смысл данного метода заключается во взаимодействии ртути и золота. Ртуть имеет свойство притягивать и обволакивать драгоценный металл. Для обнаружения металла, руду засыпают в бочки, на дне которых находится ртуть. Золото притягивалось к ртути, а остальная, опустошенная руда отбрасывается. Этот метод пользовался спросом и был эффективен в середине 20 века. Он считался достаточно дешевым и простым. Однако, ртуть все же является токсичным элементом и поэтому от метода отказались. Прилипшие частицы драгоценного металла не всегда до конца удавалось отделить от ртути, что не является практичным и приводит к потере части добытого металла.
  2. Выщелачивание. Этот метод производится при помощи цианида натрия. При помощи этого элемента частицы драгоценного металла переходят в состояние водорастворимых цианистых соединений. После этого при помощи химических реагентов их снова возвращают в твердое состояние.
  3. Флотация. Существуют такие разновидности золотоносных частиц, которые не поддаются воздействию воды и не промокают. Они плавают на поверхности, как воздушные пузырьки. Такую разновидность породы дробят, затем заливают жидкостью или маслом сосны и перемешивают. Необходимые золотые частицы всплывают подобно воздушным пузырькам, их очищают и получают конечный результат. Если речь идет о промышленных масштабах, то сосновое масло заменяется воздухом.

Основные виды сплавов

Самые многочисленные виды сплавов металлов изготавливаются на основе железа. Это стали, чугуны и ферриты.

Сталь — это вещество на основе железа, содержащее не более 2,4% углерода, применяется для изготовления деталей и корпусов промышленных установок и бытовой техники, водного, наземного и воздушного транспорта, инструментов и приспособлений. Стали отличаются широчайшим диапазоном свойств. Общие из них — прочность и упругость. Индивидуальные характеристики отдельных марок стали определяются составом легирующих присадок, вводимых при выплавке. В качестве присадок используется половина таблицы Менделеева, как металлы , так и неметаллы. Самые распространенные из них — хром, ванадий, никель, бор, марганец,  фосфор.

Легированная сталь

Если содержание углерода более 2,4% , такое вещество  называют чугуном. Чугуны более хрупкие, чем сталь. Они применяются там, где нужно выдерживать большие статические нагрузки при малых динамических. Чугуны используются при производстве станин больших  станков и технологического оборудования, оснований для рабочих столов, при отливке оград, решеток и предметов декора. В XIX и в начале XX века чугун широко применялся в строительных конструкциях. До наших дней в Англии сохранились мосты из чугуна.

Чугунные радиаторы

Вещества с большим содержанием углерода, имеющие выраженные магнитные свойства, называют ферритами. Они используются при производстве трансформаторов и катушек индуктивности.

Сплавы металлов на основе меди, содержащие от 5 до 45% цинка, принято называть латунями. Латунь мало подвержена коррозии и широко применяется как конструкционный материал в машиностроении.

Желтая латунь

Если вместо цинка к меди добавить олово, то получится бронза. Это, пожалуй, первый сплав, сознательно полученный нашими предками несколько тысячелетий назад. Бронза намного прочнее и олова, и меди и уступает по прочности только хорошо выкованной стали.

Вещества на основе свинца широко применяются для пайки проводов и труб, а также в электрохимических изделиях, прежде всего, батарейках и аккумуляторах.

Двухкомпонентные материалы на основе алюминия, в состав которых вводят кремний, магний или медь, отличаются малым удельным весом и высокой обрабатываемостью. Они используются в двигателестроении, аэрокосмической промышленности и производстве электрокомпонентов и бытовой техники.

Вариант №2

Сплавы

1) Причины использования2) Классификации3) Компоненты и лигатуры4) Применение

Человек революционный шаг сделал, когда понял, что смесь меди и олова гораздо твёрже, чем любой из этих металлов в чистом виде. Считается, что это произошло не менее восьми тысяч лет назад.

В современном мире используются десятки тысяч сплавов, и продолжается разработка новых. Используют несколько критериев для классификации сплавов.

Прежде всего, выделяют две большие группы: чёрные металлы (т.е. сплавы на основе железа) и цветные металлы (на основе других элементов).

В зависимости от того, где будет использован данный металл, его относят к сплавам общего назначения или к специальным. Далее, различают двойные и сложные (тройные, четверные и т.д.) сплавы по числу элементов, входящих в его состав.

Выделяют легированные сплавы. В них вносят специальные примеси для получения нужных свойств. С точки зрения производственного процесса сплавы бывают литейные, порошковые (спекаемые) и деформируемые.

Степень связанности элементов в сплаве может быть разной, поэтому различают механическую смесь (каждый элемент образует отдельный кристалл), твёрдый раствор (разные элементы встраивается в общую кристаллическую решётку) и соединение (атомы образуют химическую связь).

Для придания железу большей твёрдости вносят углерод, но одновременно металл становится более хрупким. Сталь содержит 0.3-2.14% углерода. Малоуглеродистая сталь используется как конструкционный материал, более твёрдые сорта идут на изготовление инструментов. Легированная сталь применяется в машиностроении и изготовлении инструментов с большой скоростью резания. Легируют сталь введением хрома, марганца, титана, ванадия и др. Таким способом добиваются увеличения прочности без потери твёрдости.

Чугун содержит от 2 до 4% углерода. Из него литьём изготавливают изделия, обладающие хорошей стойкостью к истиранию, прочностью, жёсткостью.

Кадмий замедляет износ медных сплавов. В медных сплавах цинк увеличивает пластичность и устойчивость к коррозии. Титан намного увеличивает температурный предел эксплуатации. Никель и, в меньшей степени, хром увеличивают прочность феррита, не влияя на пластичность.

9 класс по химии

2.1 Деформируемые алюминиевые сплавы

В зависимости от возможности
термического упрочнения деформируемые алюминиевые сплавы подразделяются на не
упрочняемые и упрочняемые термической обработкой.

К сплавам, неупрочняемым т/о
относятся сплавы Al c Mn (АМц1), и сплавы Al c Mg (AМг 2, АМг3). Цифра –
условный номер марки.

Эти сплавы хорошо
свариваются, обладают высокими пластическими свойствами и коррозионной
стойкостью, но невысокой прочностью, Упрочняются эти сплавы нагартовкой. Сплавы
данной группы нашли применение в качестве листового материала, используемого
для изготовления сложных по форме изделий, получаемых холодной и горячей
штамповкой и прокаткой. Изделия, получаемые глубокой вытяжкой, заклепки, рамы и
т.д.

Сплавы, упрочняемые т/о,
широко применяются в машиностроении, особенно в самолетостроении, т.к. обладают
малым удельным весом при достаточно высоких механических свойствах. К ним
относятся:

Дуралюмины – основные
легирующие компоненты — медь и магний:

Д1 – лопасти воздушных
винтов, Д16 – обшивки, шпангоуты, лонжероны самолетов, Д17 – основной
заклепочный сплав.

Высокопрочные сплавы – В95,
В96 наряду с медью и магнием содержат еще значительное количество цинка.
Применяют для высоконагруженных конструкций.

Сплавы повышенной
пластичности и коррозионной стойкости – АВ, АД31, АД33. Лопасти вертолетов,
штампованные и кованые детали сложной конфигурации.

Химические свойства металлов

Металлы легко отдают электроны, т. е. являются восстановителями. Поэтому они легко реагируют с окислителями.

Вопросы

  1. Какие атомы являются окислителями?
  2. Как называются простые вещества, состоящие из атомов, которые способны принимать электроны?

Таким образом, металлы реагируют с неметаллами. В таких реакциях неметаллы, принимая электроны, приобретают обычно НИЗШУЮ степень окисления.

Рассмотрим пример. Пусть алюминий реагирует с серой:

Вопрос. Какой из этих химических элементов способен только отдавать электроны? Сколько электронов?

Алюминий — металл, имеющий на внешнем уровне 3 электрона (III группа!), поэтому он отдаёт 3 электрона:

Поскольку атом алюминия отдает электроны, атом серы принимает их.

Вопрос. Сколько электронов может принять атом серы до завершения внешнего уровня? Почему?

У атома серы на внешнем уровне 6 электронов (VI группа!), следовательно, этот атом принимает 2 электрона:

Таким образом, полученное соединение имеет состав:

В результате получаем уравнение реакции:

Задание 8.5. Составьте, рассуждая аналогично, уравнения реакций:

  • кальций + хлор (Cl2);
  • магний + азот (N2).

Составляя уравнения реакций, помните, что атом металла отдаёт все внешние электроны, а атом неметалла принимает столько электронов, сколько их не хватает до восьми.

Названия полученных в таких реакциях соединений всегда содержат суффикс ИД:

Корень слова в названии происходит от латинского названия неметалла (см. урок 2.4).

Металлы реагируют с растворами кислот (см. урок 2.2). При составлении уравнений подобных реакций и при определении возможности такой реакции следует пользоваться рядом напряжений (рядом активности) металлов:

Металлы, стоящие в этом ряду до водорода, способны вытеснять водород из растворов кислот:

Задание 8.6. Составьте уравнения возможных реакций:

  • магний + серная кислота;
  • никель + соляная кислота;
  • ртуть + соляная кислота.

Все эти металлы в полученных соединениях двухвалентны.

Реакция металла с кислотой возможна, если в результате её получается растворимая соль. Например, магний практически не реагирует с фосфорной кислотой, поскольку его поверхность быстро покрывается слоем нерастворимого фосфата:

Металлы, стоящие после водорода, могут реагировать с некоторыми кислотами, но водород в этих реакциях не выделяется:

Задание 8.7. Какой из металлов — Ва, Mg, Fе, Рb, Сu — может реагировать с раствором серной кислоты? Почему? Составьте уравнения возможных реакций.

Металлы реагируют с водой, если они активнее железа (железо также может реагировать с водой). При этом очень активные металлы (Li – Al) реагируют с водой при нормальных условиях или при небольшом нагревании по схеме:

где х — валентность металла.

Задание 8.8. Составьте уравнения реакций по этой схеме для К, Nа, Са. Какие ещё металлы могут реагировать с водой подобным образом?

Возникает вопрос: почему алюминий практически не реагирует с водой? Действительно, мы кипятим воду в алюминиевой посуде, — и… ничего! Дело, в том, что поверхность алюминия защищена оксидной пленкой (условно — Al2O3). Если её разрушить, то начнётся реакция алюминия с водой, причём довольно активная. Полезно знать, что эту плёнку разрушают ионы хлора Cl–. А поскольку ионы алюминия небезопасны для здоровья, следует выполнять правило: в алюминиевой посуде нельзя хранить сильно солёные продукты!

Вопрос. Можно ли хранить в алюминиевой посуде кислые щи, компот?

Менее активные металлы, которые стоят в ряду напряжений после алюминия, реагируют с водой в сильно измельчённом состоянии и при сильном нагревании (выше 100 °C) по схеме:

Металлы, менее активные, чем железо, с водой не реагируют!

Металлы реагируют с растворами солей. При этом более активные металлы вытесняют менее активный металл из раствора его соли:

Задание 8.9. Какие из следующих реакций возможны и почему:

  1. серебро + нитрат меди II;
  2. никель + нитрат свинца II;
  3. медь + нитрат ртути II;
  4. цинк + нитрат никеля II.

Составьте уравнения возможных реакций. Для невозможных поясните, почему они невозможны.

Следует отметить (!), что очень активные металлы, которые при нормальных условиях реагируют с водой, не вытесняют другие металлы из растворов их солей, поскольку они реагируют с водой, а не с солью:

А затем полученная щёлочь реагирует с солью:

Поэтому реакция между сульфатом железа и натрием НЕ сопровождается вытеснением менее активного металла:

Гость форума
От: admin

Эта тема закрыта для публикации ответов.