Оксид алюминия

Алан-э-Дейл       02.05.2022 г.

Об этой статье

Соавтор(ы): :

В создании этой статьи участвовала наша опытная команда редакторов и исследователей, которые проверили ее на точность и полноту. wikiHow тщательно следит за работой редакторов, чтобы гарантировать соответствие каждой статьи нашим высоким стандартам качества. Количество просмотров этой статьи: 28 332.

Категории: Советы по хозяйству

English:Clean Oxidized Aluminum

Italiano:Pulire l’Alluminio Ossidato

Français:nettoyer de l’aluminium oxydé

Português:Limpar Alumínio Oxidado

Español:limpiar aluminio oxidado

Deutsch:Oxidiertes Aluminium reinigen

Nederlands:Geoxideerd aluminium schoonmaken

Tiếng Việt:Làm sạch đồ nhôm bị ô xi hóa

العربية:تنظيف الألومنيوم المؤكسد

Bahasa Indonesia:Membersihkan Aluminium Teroksidasi

ไทย:ทำความสะอาดอลูมิเนียมที่เกิดปฏิกิริยาออกซิเดชัน

中文:清洁氧化的铝制品

한국어:산화된 알루미늄 세척하는 방법

हिन्दी:ओक्सीडायिज्ड एल्युमीनियम को साफ़ करें

日本語:さびたアルミニウムの表面を掃除する

Türkçe:Oksitlenmiş Alüminyum Nasıl Temizlenir

Печать

Взаимодействие алюминия с простыми веществами

с кислородом

При контакте абсолютно чистого алюминия с воздухом атомы алюминия, находящиеся в поверхностном слое, мгновенно взаимодействуют с кислородом воздуха и образуют тончайшую, толщиной в несколько десятков атомарных слоев, прочную оксидную пленку состава Al2O3, которая защищает алюминий от дальнейшего окисления. Невозможно и окисление крупных образцов алюминия даже при очень высоких температурах. Тем не менее, мелкодисперсный порошок алюминия довольно легко сгорает в пламени горелки:

4Аl + 3О2 = 2Аl2О3

с галогенами

Алюминий очень энергично реагирует со всеми галогенами. Так, реакция между перемешанными порошками алюминия и йода протекает уже при комнатной температуре после добавления капли воды в качестве катализатора. Уравнение взаимодействия йода с алюминием:

2Al + 3I2 =2AlI3

С бромом, представляющим собой тёмно-бурую жидкость, алюминий также реагирует без нагревания. Образец алюминия достаточно просто внести в жидкий бром: тут же начинается бурная реакция с выделением большого количества тепла и света:

2Al + 3Br2 = 2AlBr3

Реакция между алюминием и хлором протекает при внесении нагретой алюминиевой фольги или мелкодисперсного порошка алюминия в заполненную хлором колбу. Алюминий эффектно сгорает в хлоре в соответствии с уравнением:

2Al + 3Cl2 = 2AlCl3

с серой

При нагревании до 150-200 оС или после поджигания смеси порошкообразных алюминия и серы между ними начинается интенсивная экзотермическая реакция с выделением света:

— сульфид алюминия

При взаимодействии алюминия с азотом при температуре около 800 oC образуется нитрид алюминия:

с углеродом

При температуре около 2000oC алюминий взаимодействует с углеродом и образует карбид (метанид) алюминия, содержащий углерод в степени окисления -4, как в метане.

Производство алюминия технической чистоты

Алюминий технической чистоты (более 99%) промышленно получают в результате двух последовательных процессов. В результате первого получают оксид алюминия (процесс Байера), а на следующем этапе проводят процесс электролитической редукции (электролиз методом Холла-Эру), благодаря которому получают чистый алюминий. Для снижения расходов, связанных с транспортировкой бокситовой руды, большинство перерабатывающих предприятий строят недалеко от шахт.

Процесс Байера

Первый этап после добычи руды заключается в ее мытье с помощью воды. Таким образом удаляют большую часть загрязнений, которые просто растворяются в воде. Затем, в обработанное водой сырье добавляют CaO, т.е. оксид кальция. После этого его измельчают с помощью специальных трубных мельниц до момента получения зерен с очень малым диаметром, т.е. меньше 300 мкм

Соответствующее измельчение сырья чрезвычайно важно, так как оно обеспечивает большую площадь поверхности зерен, что, в свою очередь, влияет на эффективность протекания процесса экстракции

Следующий этап производства оксида алюминия заключается в растворении зерен при помощи водного раствора каустической соды. В Группе PCC гидроксид натрия производится методом мембранного электролиза. Полученный таким образом продукт характеризуется очень высоким качеством и чистотой, отвечая при этом требованиям последнего издания Европейской фармакопеи. Смесь, содержащая молотые зерна и гидроксид натрия, хранится в течение нескольких часов в специальных реакторах, называемых автоклавами. Во время протекающего процесса осаждения в реакторах поддерживаются высокое давление и повышенная температура. Таким образом, получают алюминат натрия, который затем очищают при помощи разных фильтров.

На следующем этапе очищенный раствор алюмината натрия подвергается разложению. В результате образуется натровый щелок (т.е. водный раствор каустической соды) и кристаллы гидроокиси алюминия высокой степени чистоты. Полученный в результате кристаллизации осадок отфильтровывают и промывают водой. А оставшийся натровый щелок нагревают и возвращают в процесс для повторного использования.

Последним этапом производства чистого оксида алюминия является кальцинация. Она заключается в нагревании гидроксида алюминия при температуре выше 1000oC, в результате чего происходит его разложение на Al2O3, который получают в виде чистого белого порошка. Так подготовленный оксид алюминия транспортируют в печи для получения металлического алюминия в процессе электролитической редукции.

Электролиз оксида алюминия

Следующим этапом получения чистого алюминия является проведение процесса электролиза методом Холла-Эру. В первую очередь, полученный в процессе Байера Al2O3 расплавляют с криолитом и таким образом приготовленный раствор подвергают процессу электролиза при температуре не выше 900oC. Полученный таким образом жидкий алюминий отделяют от электролита и удаляют из электролитических ванн с помощью т.н. вакуумных сифонов. Затем сырье попадает в литейное устройство, откуда на дальнейшем этапе его вкладывают в раскаленные печи, в которых происходит процесс переработки. Он заключается в очистке алюминия с целью достижения максимальной чистоты. В промышленных условиях алюминий может быть очищен двумя методами. Первый из них заключается в растопке алюминия и пропускании через него хлора, благодаря чему примеси связываются с хлором, образуя хлориды, которые затем удаляют из процесса. Второй метод заключается в электролитической редукции расплавленного с медью алюминия. Полученный таким образом конечный продукт характеризуется очень высокой чистотой.

Чистый оксид — алюминий

Чистый оксид алюминия при низких температурах мало эффективен в изомеризации скелета, но вызывает миграцию метального радикала по углеродной цепи.

Схема электролитического получения алюминия.

Чистый оксид алюминия А12О3, свободный от воды, оксидов железа, а также от оксида кремния ( IV), получают из боксита и в последние годы из нефелина. Он хорошо растворяется в расплавленном криолите. Добавка фторида кальция способствует поддержке температуры ниже 1000 С, улучшает электрическую проводимость электролита, уменьшает его плотность, что способствует выделению алюминия на дне ванны.

Чистый оксид алюминия А12О3, свободный от воды, оксидов железа, а также от двуокиси кремния, получают из боксита и в последние годы из нефелина. Он хорошо растворяется в расплавленном криолите.

Схема электролитического получения алюминия.

Чистый оксид алюминия А12О3, свободный от воды, оксидов железа, а также от оксида кремния ( IV), получают из боксита и в последние годы из нефелина. Он хорошо растворяется в расплавленном криолите. Добавка фторида кальция способствует поддержке температуры ниже 1000 С, улучшает электрическую проводимость электролита, уменьшает его плотность, что способствует выделению алюминия на дне ванны.

Схема электролитического получения алюминия.

Чистый оксид алюминия А12О3, свободный от воды, оксидов железа, а также от оксида кремния ( IV), получают из боксита и в последние годы из нефелина. Он хорошо растворяется в расплавленном криолите. Добавка фторида кальция способствует поддержанию температуры ниже 1000 С, улучшает электрическую проводимость электролита, уменьшает его плотность, что способствует выделению алюминия на дне ванны.

Схема электролитического получения алюминия.

Чистый оксид алюминия А12О3, свободный от воды, оксидов железа, а также от оксида кремния ( IV), получают из боксита и в последние годы из нефелина. Он хорошо растворяется в расплавленном криолите. Добавка фторида кальция способствует поддержке температуры ниже 1000 С, улучшает электрическую проводимость электролита, уменьшает его плотность, что способствует выделению алюминия на дне ванны.

Схема электролитического получения алюминия.

Чистый оксид алюминия А12О3, свободный от воды, оксидов железа, а также от оксида кремния ( IV), получают из боксита и в последние годы из нефелина. Он хорошо растворяется в расплавленном криолите. Добавка фторида кальция способствует поддержанию температуры ниже 1000 С, улучшает электрическую проводимость электролита, уменьшает его плотность, что способствует выделению алюминия на дне ванны.

Чистый оксид алюминия А120з, сшбодный от воды, оксидов железа, а также от оксида кремния ( IV), получают из боксита и в последние годы из нефелина. Он хорошо растворяется в расплавленном криолите. Добавка фторида кальция способствует поддержанию температуры ниже 1000 С, улучшает электрическую проводимость электролита, уменьшает его плотность, что способствует выделению алюминия на дне ванны.

Расход чистого оксида алюминия на производство 1 т алюминия составляет 1888 9 кг. Поэтому расход глинозема на 1 т алюминия находится в пределах от 1916 4 до 1926 4 кг.

При использовании чистого оксида алюминия возникают трудности, связанные с дезактивацией катализатора вследствие сульфатации его поверхности и воздействия влаги, с увеличением влагосодержа-ния от 5 до 35 % конверсия сероводорода снижается в 2 — 2 5 раза. Для предотвращения избыточного накопления сульфатов поверхность А12О3 обрабатывают сероводородом, однако такая обработка не позволяет полностью устранить дезактивирующее влияние сульфатации.

Анодирование в сернокислом электролите

Анодирование в серной кислоте позволяет получить полупрозрачные, бесцветные покрытия толщиной около 35 мк. Если процессу анодирования предшествует процесс глянцевания поверхности деталей, покрытия получают высокие декоративные качества (блестящее анодирование). В серной кислоте получают также пластичные анодные пленки, которые не разрушаются при формовке изделий.

Концентрация серной кислоты и температура электролита

Концентрация серной кислоты для анодирования в промышленных условиях принимается в диапазоне 8-35% (по массе). В концентрированном растворе анодная пленка получается мягкой и пористой, эластичность пленки высокая. Классической является концентрация 15% (по массе). Температуру в процессе анодирования задают в пределах от 18С до 25С. В большинстве случаев принимается температура в 20С. С применением серной кислоты получают также твердые анодные пленки, в этом случае процесс анодирования проводится при низких значениях температур (от -5 до +5 С).

Контроль температуры в процессе анодирования является обязательным, от температуры зависит плотность тока и скорость растворения пленки, что в свою очередь оказывает прямое влияние на качество и характеристики покрытия. Для того, чтобы избежать локального перегрева раствора электролита используют специальные перемешивающие устройства.

Напряжение и плотность тока

При анодировании в серной кислоте используется стандартный выпрямитель с выходным напряжением до 24 вольта. При стандартном режиме сила тока составляет 16 вольт при плотности тока 1,5 а/дм2. Для получения коррозионностойких пленок большой толщины напряжение силу тока поднимают до 18 вольт, а при обработке сплавов алюминия с кремнием до 22 вольт. В отдельных случаях, например, при анодировании рулонного материала или проволоки используется переменный ток. Использование пониженной плотности тока позволяет получать тонкие, прозрачные окисные пленки, превосходящие по прозрачности пленки аналогичной толщины, полученные при стандартных значениях плотности тока.

Длительность процесса

Продолжительность процесса анодирования зависит от требуемых значений толщины пленки, а также используемой плотности тока. Для чистого алюминия это соотношение можно предложить в виде:

Толщина пленки, мк. = (Плотность тока, а/дм2 Х Время, мин.)/3

Соотношение является приблизительным, т. к. на продолжительность процесса может зависеть от типа сплава и режима обработки.

Рабочий процесс

Технологический процесс анодирования отличается от процессов нанесения гальванических покрытий прежде всего тем, что рассеивающая способность электролитов анодирования значительно выше, чем у электролитов, использующихся при процессах хромирования, меднения, цинкования или никелирования металла. Эффективная рассеивающая способность при активном перемешивании позволяет получать равномерные по толщине пленки на всей поверхности изделий, включая внутренние поверхности отверстий и пазов.

В остальном технологический процесс анодирования аналогичен процессам электрохимического нанесения покрытий – изделия погружают в предварительно нагретый электролит на подвесах или зажимах, детали не соприкасаются друг с другом, расстояние до катода должно быть не менее 15 см. (для габаритных изделий значения выше). Затем включается перемешивание раствора и подается ток. В обычных условиях площадь катода должна быть равна площади анода, сечение катода должно быть достаточным для обеспечения требуемой плотности тока.

По окончании процесса прекращают подачу тока и незамедлительно извлекают изделия из гальванической ванны. Изделия промывают в проточной воде и сушат.

О температуре плавления

Необходимо помнить: алюминий очень легко поддается литью и начинает превращаться в жидкую субстанцию уже при температуре в 660 градусов. Для того чтобы понять, что этот показатель довольно низкий, достаточно сравнить его с температурами плавления других металлов, которые также нередко используются для изготовления тех или иных, нужных в обиходе предметов.

Например:

  • сталь начинает плавиться лишь при температуре в 1300 градусов;
  • чугун — при 1100 градусах.

Но все же, хоть температура плавления алюминия по Цельсию и не слишком высока по сравнению со многими другими металлами, достичь 600 градусов в домашних условиях с использованием обыкновенной газовой или электрической плиты довольно трудно.

Уменьшение температуры

Прежде чем подвергать металл плавлению, можно специальными методами уменьшить его температуру плавления, например, использовать в виде порошка. В этом случае он начнет плавиться чуть быстрее. Но при этом он становится опасным, так как взаимодействуя с атмосферным кислородом, может окислиться или воспламениться. А в результате окисления, как мы помним из школьного курса химии, образуется оксид алюминия; и температура, при которой начинает плавиться это вещество, уже превышает две тысячи градусов.

Вообще избежать образования оксида не получится, если заниматься плавлением алюминия, но уменьшить количество лишнего вещества вполне возможно. При плавлении алюминия нужно не допускать попадания в вещество воды. Ведь если это случится, то произойдет взрыв.

Перед началом процесса нужно убедиться в том, что сырье является абсолютно сухим. Чаще всего в качестве исходного материала применяется алюминиевая проволока. Предварительно ее нужно с помощью ножниц разделить на множество мелких по длине кусочков. А для того, чтобы уменьшить площадь контакта с содержащимся в атмосфере кислородом, эти кусочки прессуются пассатижами.

Не всегда есть необходимость создать алюминиевое изделие высокого качества, поэтому вовсе не обязательно всегда использовать порошок или мелко нарезанную и плотно сдавленную проволоку. Можно взять любой предмет, который уже был использован, например, банку, в которой хранились консервы. Но перед плавкой нужно лишить ее нижнего шва или обрезать профиль. Полученное сырье может быть окрашено или испачкано. Не нужно об этом беспокоиться. Все, что имеется лишнее на поверхности, быстро отходит в виде шлаков.

Это интересно: Сварка вольфрамовым электродом и классификация материала: разбираем вопрос

Получение и применение алюминия

Алюминий достаточно трудно выделить из природных соединений химическим способом, что объясняется высокой прочностью связей в оксиде алюминия, поэтому, для промышленного получения алюминия применяют электролиз раствора глинозема Al2O3 в расплавленном криолите Na3AlF6. В результате процесса алюминий выделяется на катоде, на аноде — кислород:

2Al2O3 → 4Al + 3O2

Исходным сырьем служат бокситы. Электролиз протекает при температуре 1000°C: температура плавления оксида алюминия составляет 2500°C — проводить электролиз при такой температуре не представляется возможным, поэтому оксид алюминия растворяют в расплавленном криолите, и уже затем полученный электролит используют при электролизе для получения алюминия.

Применение алюминия:

  • алюминиевые сплавы широко применяются в качестве конструкционных материалов в автомобиле-, самолето-, судостроении: дюралюминий, силумин, алюминиевая бронза;
  • в химической промышленности в качестве восстановителя;
  • в пищевой промышленности для изготовления фольги, посуды, упаковочного материала;
  • для изготовления проводов и проч.

Температура плавления металлов

Металлы и неметаллы

Любой кусок металла, например, алюминия, содержит миллионы отдельных кристаллов, которые называются зернами. Каждое зерно имеет свою уникальную ориентацию атомной решетки, но все вместе зерна ориентированы внутри этого куска случайным образом. Такая структура называется поликристаллической.

Аморфные материалы, например, стекло, отличаются от кристаллических материалов, например, алюминия, по двум важным отличиям, которые связаны друг с другом:

  • отсутствие дальнего порядка молекулярной структуры
  • различия в характере плавления и термического расширения.

Различие молекулярной структуры можно видеть на рисунке 1. Слева показана плотно упакованная и упорядоченная кристаллическая структура. Аморфный материал показан справа: менее плотная структура со случайным расположением атомов.

Рисунок 1 – Структура кристаллических (а) и аморфных (б) материалов. Кристаллическая структура: упорядоченная, повторяющаяся и плотная, аморфная структура – более свободно упакованная с беспорядочным расположением атомов.

Плавление металлов

Это различие в структуре проявляется при плавлении металлов, в том числе, плавлении алюминия различной чистоты и его сплавов. Менее плотно упакованные атомы дают увеличение объема (снижение плотности) по сравнению с тем же металлом в твердом кристаллическом состоянии.

Металлы при плавлении испытывают увеличение объема. У чистых металлов это объемное изменение происходит весьма резко и при постоянной температуре – температуре плавления, как это показано на рисунке 2. Это изменение представляет собой разрыв между наклонными линиями по обе стороны от точки плавления. Обе эти наклонные линии характеризуют температурное расширение металла, которое обычно является различным в жидком и твердом состоянии.

Рисунок 2 – Характерное изменение объема чистого металла по сравнению с изменением объема аморфного материала : Tg – температура стеклования (перехода жидкого состояния в твердое); Tm – температура плавления

Теплота плавления

С этим резким увеличением объема при переходе металла из твердого состояния в жидкое связано определенное количество тепла, которое называется скрытой теплотой плавления. Это тепло заставляет атомы терять плотную и упорядоченное кристаллическую структуру. Этот процесс является обратимым, он работает в обоих направлениях – и при нагреве, и при охлаждении.

Равновесная температура плавления

Как было показано выше, чистые кристаллические вещества, например, чистые металлы, имеют характерную температуру плавления, которую часто называют «точкой плавления». При этой температуре это чистое твердое кристаллическое вещество плавится и становится жидкостью. Переход между твердым и жидким состоянием для малых образцов чистых металлов настолько мал, что может измеряться с точностью 0,1 ºС.

Жидкости имеют характерную температуру, при которой они превращаются в твердое вещество. Эту температуру называют температурой затвердевания или точкой затвердевания. Теоретически – в равновесных условиях – равновесная температура плавления твердого вещества является той же самой, что и равновесная температура его затвердевания. На практике можно наблюдать небольшие различия между этими величинами (рисунок 3).


Рисунок 3 – Кривые охлаждения и нагрева чистого металла. Видны явления переохлаждения при охлаждении и перегрева при нагреве. В начале затвердевания наблюдается впадина на кривой охлаждения, что объясняется замедленным началом кристаллизации

Температуры ликвидус и солидус

  • Температура начала плавления называется температурой солидус (или точкой солидус)
  • Температура окончания плавления – температурой ликвидус (или точкой ликвидус).

«Солидус» означает, понятно, твердый, а «ликвидус» – жидкий: при температуре солидуса весь сплав еще твердый, а при температуре ликвидуса – весь уже жидкий.

При затвердевании этого сплава из жидкого состояния температура начала кристаллизации (затвердевания) будет та же температурой ликвидус, а окончания кристаллизации – та же температура солидус. При температуре сплава между его температурами солидуса и ликвидуса он находится в полужидком-полутвердом, кашеобразном состоянии.

Применение

Оксид алюминия (Al2O3), как минерал, называется корунд. Крупные прозрачные кристаллы корунда используются как драгоценные камни. Из-за примесей корунд бывает окрашен в разные цвета: красный корунд (содержащий примеси хрома) называется рубином, синий, традиционно — сапфиром. Согласно принятым в ювелирном деле правилам, сапфиром называют кристаллический α-оксид алюминия любой окраски, кроме красной. В настоящее время кристаллы ювелирного корунда выращивают искусственно, но природные камни всё равно ценятся выше, хотя по виду не отличаются. Также корунд применяется как огнеупорный материал. Остальные кристаллические формы используются, как правило, в качестве катализаторов, адсорбентов, инертных наполнителей в физических исследованиях и химической промышленности.

Керамика на основе оксида алюминия обладает высокой твёрдостью, огнеупорностью и антифрикционными свойствами, а также является хорошим изолятором. Она используется в горелках газоразрядных ламп, подложек интегральных схем, в запорных элементах керамических трубопроводных кранов, в зубных протезах и т. д.

Так называемый β-оксид алюминия в действительности представляет собой смешанный оксид алюминия и натрия. Он и соединения с его структурой вызывают большой научный интерес в качестве металлопроводящего твёрдого электролита.

γ-Модификации оксида алюминия применяются в качестве носителя катализаторов, сырья для производства смешанных катализаторов, осушителя в различных процессах химических, нефтехимических производств (ГОСТ 8136-85).

Основные характеристики алюминия

Алюминий — серебристый металл с удельным весом 2,7*103кг/м3 и плотностью 2,7 г/см3. Легкий и пластичный, хорош, как проводник электроэнергии, благодаря тому, что теплопроводность алюминия довольно высока — 180 ккал/м*час*град (указан коэффициент теплопроводности). Теплопроводность алюминия превышает аналогичный показатель чугуна в пять раз и железа в три раза.

Благодаря своему составу, этот металл можно легко раскатать в тонкий лист или вытянуть в проволоку. При соприкосновении с воздухом на его поверхности образуется оксидная пленка (оксид алюминия), которая является защитой от окисления и обеспечивает его высокие антикоррозионные свойства. Тонкий алюминий, например, фольга или порошок этого металла мгновенно сгорают, если их нагреть до высоких температур и становятся оксидом алюминия.

Металл не особенно устойчив к агрессивным кислотам. К примеру, его можно растворить в серной или соляной кислотах даже, если они разбавленны, особенно, если их нагреть. Однако он не растворяется ни в разбавленной ни в концентрированной и при этом холодной азотной кислоте, благодаря оксидной пленке. Определенное воздействие на металл имеют водные растворы щелочей — оксидный слой растворяется и образуются соли, содержащие этот металл в составе аниона — алюминаты.

Известно, что алюминий является самым часто встречающимся металлом в природе, но впервые в чистом виде его смог получить ученый-физик из Дании Х. Эрстед еще в 1925 году XIX века. Этот металл занимает третье место по распространенности в природе среди элементов и является лидером среди металлов. 8,8% алюминия содержит земная кора. Его выявили в составе слюд, полевых шпатов, глин и минералов.

Соединения алюминия и их вред

Некоторые соединения алюминия способны вызывать острую интоксикацию. Это хорошо растворимые соли, такие как сульфат, хлорид и нитрат. При этом в незначительных количествах сернокислый алюминий применяется в пищевой промышленности. Гидроксид алюминия может быть как полезным, так и вредным, он является основанием, и проявляет вред, стимулируя гемолитическое действие и разрушая красные кровяные тельца.

Алюминиевая пыль (или алюминиевая пудра)

Средней токсичностью обладает сам металлический алюминий, и особо велик вред от хронического вдыхания алюминиевой пыли. Этот способ интоксикации является промышленным. Если вдыхать алюминиевую пыль, бериллиевую пыль и пыль бронзы, содержащей элемент № 13,  то через месяц в легких появляются признаки их воспаления, возникает эмфизема, диффузный пневмосклероз. Вдыхание нитрида алюминия приводят также к воспалению бронхов, пневмосклерозу, дистрофии печёночных клеток.

Сварка алюминиевого корпуса лодки

Также при вдыхании паров алюминия наносится вред центральной нервной системе, и при длительном воздействии этого токсического фактора возникает характерная клиническая симптоматика, описанная ниже, поэтому специалисты по сварке алюминия входят в группу риска. Образующиеся пары алюминия и его соединений наносят выраженный вред здоровью. Если в течение 3 часов ежедневно вдыхать аэрозоль, который выделяется при сварке, то, в конце концов, также разрастается соединительная ткань в легких и уменьшается легочная вентиляция, а в высоких концентрациях аэрозоль вызывает тяжелую пневмонию.

Вреден и хлоргидрат алюминия, но об этом соединении будет рассказано ниже, поскольку он входит в состав косметических препаратов. В состав многих косметических средств входит и такое соединение, как хлорид алюминия: он широко применяется как катализатор при органическом синтезе, и он же является промышленным ядом при проникновении в организм, принося серьезный вред здоровью.

Хлорид алюминия (хлористый алюминия)

Даже глиняная пыль способна к повреждению эпителия дыхательных путей, она вызывает дистрофию хрящевого скелета бронхов с развитием некроза и очагового склероза. Вдыхание пыли, которая скопилась рядом с плавильными печами, в которых получают металл, через несколько месяцев приводит к разрастанию соединительной ткани в легких с развитием фиброза, а через год развиваются рубцы и спайки в легочной ткани.

Фосфид алюминия используется как пестицид, но это соединение нестойкое, и, реагируя с водой, он распадается, выделяя ядовитый фосфин – газ, состоящий из фосфора и водорода, с запахом тухлой рыбы.

Оксид алюминия, который покрывает свежую поверхность металла, также приносит вред здоровью. Вся посуда из этого металла покрыта окисной пленкой, поскольку металл очень быстро окисляется на воздухе, содержащимся в нем кислородом. Есть и совершенно нетоксичный оксид алюминия, встречающийся в природе. Это корунд, и особенно – рубины и сапфиры. Они являются исключительно стойкими и никак не влияют на наше здоровье. А вот посуда из этого «небесного» металла при определённых условиях является достаточно токсичной, и об этом рассказано ниже.

Свойства

Оксид алюминия в порошкообразном виде.

Al 2 O 3 является электрическим изолятором, но имеет относительно высокую теплопроводность ( 30 Вт · м -1 · K -1 ) для керамического материала. Оксид алюминия не растворяется в воде. В его наиболее часто встречающейся кристаллической форме, называемой корундом или α-оксидом алюминия, его твердость делает его пригодным для использования в качестве абразива и компонента в режущих инструментах .

Оксид алюминия отвечает за устойчивость металлического алюминия к атмосферным воздействиям . Металлический алюминий очень реактивен с атмосферным кислородом, и тонкий пассивирующий слой оксида алюминия (толщиной 4 нм) образуется на любой открытой поверхности алюминия в течение сотен пикосекунд. Этот слой защищает металл от дальнейшего окисления. Толщина и свойства этого оксидного слоя могут быть улучшены с помощью процесса, называемого анодированием . Ряд сплавов , таких как алюминиевая бронза , используют это свойство за счет включения алюминия в сплав для повышения коррозионной стойкости. Оксид алюминия, образующийся при анодировании, обычно является аморфным , но процессы окисления при помощи разряда, такие как плазменное электролитическое окисление, приводят к значительной доле кристаллического оксида алюминия в покрытии, повышая его твердость .

Оксид алюминия был исключен из списков химикатов Агентства по охране окружающей среды США в 1988 году. Оксид алюминия внесен в список токсичных выбросов Агентства по охране окружающей среды, если он имеет волокнистую форму.

Амфотерный характер

Оксид алюминия является амфотерным веществом, что означает, что он может реагировать как с кислотами, так и с основаниями , такими как фтористоводородная кислота и гидроксид натрия , действуя как кислота с основанием и основание с кислотой, нейтрализуя другое и образуя соль.

Al 2 O 3 + 6 HF → 2 AlF 3 + 3 H 2 O
Al 2 O 3 + 2 NaOH + 3 H 2 O → 2 NaAl (OH) 4 ( алюминат натрия )
Гость форума
От: admin

Эта тема закрыта для публикации ответов.