Самые прочные металлы в мире: топ-10

Алан-э-Дейл       22.04.2023 г.

Как правильно выбрать высокотемпературный изоляционный материал

При выборе теплоизоляции обращается внимание не только на то, из чего изготовлен продукт, но и на множество других факторов. Во время покупки, прежде всего, необходимо внимательно ознакомиться с техническими характеристиками и обратить внимание на сертификат пожарной безопасности, где должна стоять маркировка НГ (негорючий)

Все остальные варианты не рассматриваются. Только после этого обращается внимание на дополнительные характеристики.

  • Гигроскопичность и влагостойкость – особенно важны при работах во влажном климате;
  • Хорошие теплоизоляционные свойства, которые определяются по показателю теплопроводности;
  • Хорошая звукоизоляция;
  • Высокая плотность при небольшом весе;
  • Прочность;
  • Долговечность использования без потерь физических свойств и своего основанного предназначения;
  • Стоимость желательно должна быть невысокой;
  • Простота использования;
  • Безопасность использования, продукция не должна быть токсичной, при повышении температуры или пожаре не допускается выделение опасных веществ;
  • В отдельных случаях, хорошо, если выбранный вариант будет обеспечивать комплексную защиту как от повышенных температур, так и от влаги, о также служить звукоизолятором.

Свойства

Чтобы понимать, где лучше использовать материал, нужно знать свойства тугоплавких металлов. Из них изготавливаются детали для промышленного оборудования, техники и электроники. Характеристики тяжелых тугоплавких металлов будут описаны ниже.

Физические свойства

Характеристики:

  1. Плотность — до 10000 кг/м3. У вольфрама этот показатель достигает 19000 кг/м3.
  2. Средняя температура плавления — 2500 градусов по Цельсию. Самая высокая температура плавления металла у вольфрама — 3390 градусов.
  3. Удельная теплоёмкость — 400 Дж.

Тугоплавкие предметы не выдерживают ударов и падений.

Химические свойства

Химические свойства:

  1. Это твердые вещества, обладающие высокой химической активностью.
  2. Прочная межатомная структура.
  3. Сопротивляемость длительному воздействию кислот и щелочей.
  4. Высокий показатель парамагнитности.

Эти материалы имеют некоторые недостатки. Главным из них является трудный процесс обработки и изготовления продукции из него.

Места использования высокотемпературных изоляций

Огнеупорная изоляция отличается составом и способом производства в зависимости от предполагаемого места и возможностей ее использования. Правильно подобранный материал гарантирует безопасность имущества и полномасштабное его применение.  Огнезащитные средства сокращают потери тепла, защищают соседние материалы от возгорания, могут служить звукоизоляцией.

  • Огнестойкая изоляция применяется при возведении стен домов и перекрытий. Это могут быть жилые дома или промышленные объекты. Из чего возводится объект строительства не имеет значения. Это может быть кирпич, бетонные плиты или дерево. Здесь может применяться минеральная или базальтовая вата, которая не горит и не впитывает влагу. Форма материала может быть любая – плиты, рулоны или маты, в зависимости от пожеланий.
  • Для защиты металлических дымоходов, трубопроводов воды, газа и горючих материалов применяется как термоизоляция от внешней среды.
  • Металлическая фольга с усиленным теплоотражающим свойством используется для изоляции дымоходов домашних отопительных печей, каминов и бань. Ею же заполняются участки, прилегающие к дымоходам.
  • В огнестойких дверях, воротах, противопожарных перегородках используется огнеупорный материал для заполнения пустот. Противопожарные средства защиты проемов обязаны соответствовать нормам безопасности – уметь противостоять проникновению огня и дыма.
  • Материал, используемый для теплоизоляции двигателей машин, установок, вырабатывающих электроэнергию, обязан препятствовать излишнему расходу тепла, нагреву прилегающих поверхностей и обладать свойством звукоизоляции.

Свойства самых тугоплавких металлов

Так самый тугоплавкий металл в мире (вольфрам) обычно легируется рением, торием, никелем при участии меди и/или железа. Первый делает сплав более коррозионстойким, второй — более надежным, а третий — придает небывалую плотность

Следует обратить внимание, что во всех сплавах вольфрама содержится не более 4/5. Из-за того, что вольфрам одновременно и твердый, и тугоплавкий его обычно применяют в электроснабжении, строении приборов, изготовлении оружия, снарядов, боеголовок и ракет

Более плотные сплавы (на базе никеля) применяют для производства клюшек для игры в гольф. Вольфрам образует и так называемые псевдосплавы. Дело в том, что в них металл не легируется, а наполняется жидким серебром или медью. За счет разницы в температурах расплава получаются лучшие тепло и электропроводные свойства.

Молибден в отличие от вольфрама можно легировать лишь не некоторые сотые долей и получать при этом отличные свойства. Основными легирующими элементами молибдена являются: титан+цирконий и вольфрам. С последним сплав получается чрезвычайно инертным, с большим сопротивлением. Это дает возможность использовать его для изготовления форм для литья цинковых деталей. Особое направления использования молибдена — в качестве легирующего элемента в стальных сплавах. Сплавы сталь+молибден обладают хорошей износостойкостью и невысокими показателями трения. Сталь+молибден применяют в для изготовления труб, трубных конструкций, автомобиле и машиностроении.

Ниобий и тантал как братья, всегда находятся рядом. И тот и другой применяют в изготовлении электролитических конденсаторов .Ниобий иногда также легируют  гафнием и титаном, чтобы он не вступал в реакцию с кислородов во время нагрева. Отжиг ниобия позволяет получать металл с разными коэффициентами упругости и твердости. Ниобий можно встретить в электроснабжении, ракето- и судостроении, ядерной промышленности и пр. Тантал же благодаря своей инертности к кислотам используется в медицине и производстве высокоточной электроники.

Самый редкий и самый дорогой металл из представленных — рений. Его сложно добывать, поэтому в сплавах он выступает не в качестве основного элемента, а в качестве легирующего. Нередким является его применение с медью и платиной. Рений упрочняет такие образования и улучшает их способность к ковке. Используется в ядерной, химической (катализатор) и электронной промышленностях.

Использование полезных свойств тугоплавких металлов и сплавов рассматривается учеными всего мира, как весьма перспективное направление научных изысканий.

Матрица

В этом направлении больших успехов добилось Обнинское ПО технологии. Расположение слоев ткани при плетении в особых направлениях обеспечивает работоспособность материала при колебаниях температур от -196 до +2700С, причем деталь совершенно не коробится — материал подбирается так, что попеременно работают то одни слои, то другие, то третьи, расширяясь в разные стороны.

В местах с максимальными температурами применяются углерод-углеродные композиционные материалы (УУКМ). Они фактически незаменимы во вкладышах критического сечения сопел твердотопливных двигателей, входных «воротниках», раструбах сопел. Нос «Шаттла» и кромки его крыльев тоже прикрывают УУКМ.

Существует много технологий получения УУКМ. В общем виде материал представляет собой каркас из углеродных волокон, промежутки между которыми тоже заполнены углеродным материалом, «матрицей». Матрицу получают разложением подходящих органических веществ, жидких или газообразных, прямо в объеме каркаса, при помощи специальных печей; каркас получают методом плетения или сборки и последующего отжига углепластиковых стержней.

Тугоплавкий материал

Тугоплавкие материалы размягчаются при температуре выше 1350 С.

Тугоплавкие материалы являются дорогостоящими и находят применение в основном в некоторых специфических отраслях машиностроения и приборостроения.

Зависимость эффективности теплообмена.| Взаимное расположение образца и нагревателя.

Тугоплавкие материалы на воздухе в основном испытывают при температуре до 1273 К. Нагрев до 1773 К затруднен в связи с применением для испытаний на воздухе в основном хромоникелевых нагревателей.

Тугоплавкие материалы ( металлы, сплавы и соединения) являются сравнительно новыми материалами в машиностроении, приборостроении и других отраслях техники, и области применения их еще в полной мере не определились.

Тугоплавкие материалы для космической техники, материалы 5 семинара в Планзее.

Тугоплавкие материалы — рубракс, канифоль и другие — подвергают поверхностной очистке путем снятия ( скалывания) наружного слоя, а также дроблению на молотковой дробилке. Рубракс размельчается на куски размером 0 5 — 1 мм, а канифоль — 1 — 5 мм. При длительном хранении, особенно в жаркое время года, куски канифоли и рубракса слипаются, поэтому большого запаса дробленого материала создавать не следует. Для предохранения от слипания рубракс пропудривают мелом.

Тугоплавкие материалы, получаемые путем пиролиза газообразных смесей, широко применяются в высокотемпературных аппаратах. В данной работе приводятся результаты экспериментального исследования процессов осаждения карбида циркония и ниобия из смеси соответствующего хлорида металла, метана, водорода и гелия.

Тугоплавкие материалы типа графита аблируют в процессе окисления, например при сгорании твердого вещества. Можно ожидать, что при высоких тепловых потоках, характерных для условий входа в атмосферу, тугоплавкий материал вследствие больших нагрузок начнет отслаиваться с образованием пограничного слоя, состоящего из газа с твердыми частицами, в котором происходят испарение или химическая реакция.

Какие тугоплавкие материалы применяют в полупроводниковом производстве.

Этот практически беспористый тугоплавкий материал перспективен как конструкционный материал для высокотемпературных теплообменников и печей.

Сравнительные кривые окисления на воздухе при 1039 С разных тугоплавких металлов ( Е. М. Савицкий.

Из тугоплавких материалов тантал является наиболее кислотостойким. Ниобий по кислотостойкости превосходит сплавы на основах железа и никеля, однако уступает танталу.

Использование тугоплавких материалов существенно ограничивается их недостаточной устойчивостью против окисления при высоких температурах. Ниобий и тантал в этом отношении обладают преимуществом по сравнению с вольфрамом. Скорость окисления всех четырех металлов слишком велика и не позволяет использовать их для возвращающихся на Землю летательных аппаратов без соответствующего защитного покрытия.

Из тугоплавких материалов обычно изготавливают детали насосов, форсунок для распыления сильноагрессивных жидкостей, циклонов и других деталей и оборудования, эксплуатируемых в агрессивных и эрозионных средах.

Тугоплавкий металл

Тугоплавкие металлы обладают температурой плавления выше температуры плавления железа.

Свойства некоторых сплавов тугоплавких металлов.

Тугоплавкие металлы и их сплавы используют главным образом как жаропрочные.

Тугоплавкие металлы ( никель, кобальт, железо, хром, родий, палладий, платина и др.), осаждаемые с напряжениями растяжения.

Тугоплавкие металлы обычно получают восстановлением их солей металлом или водородом, а также электролизом. Наиболее простым способом получения довольно чистого хрома является его электролитическое осаждение из водных растворов. Электролитический хром содержит, однако, довольно значительные количества кислорода и водорода. Наиболее чистый хром получают йодндным методом, аналогичным описанному выше для очистки титана и циркония, а также электролитическим рафинированием недостаточно чистого хрома.

Тугоплавкие металлы окажутся совершенно необходимыми для ракет с атомным двигателем. В проектируемой атомной прямоточной ракете температура газа будет достигать 1930 С, в результате чего скорость такой ракеты может в 3 раза превысить скорость ракет с химическим топливом.

Зависимость скорости окисления металла ( количество окисляющегося металла за час с квадратного метра поверхности металла, соприкасающейся с воздухом от температуры.

Тугоплавкие металлы имеют достаточно высокое р и сравнительно небольшой ТКр. Эти металлы и их сплавы применяются для изготовления нагревательных элементов, работающих в вакууме или в инертной среде, термопары для измерения высоких температур. Тонкие пленки ( десятки — сотни нанометров) тугоплавких материалов, нанесенные на диэлектрические подложки, используются в качестве резисторов в интегральных микросхемах.

Тугоплавкие металлы обычно получают восстановлением их солей металлом или водородом, а также электролизом. Наиболее простым способом получения довольно чистого хрома является его электролитическое осаждение из водных растворов. Электролитический хром содержит, однако, довольно значительные количества кислорода и водорода. Наиболее чистый хром получают йодидньщ методом, аналогичным описанному выше для очистки титана и циркония, а также электролитическим рафинированием недостаточно чистого хрома.

Тугоплавкие металлы окажутся совершенно необходимыми для ракет с атомным двигателем. В проектируемой атомной прямоточной ракете температура газа будет достигать 1930 С, в результате чего скорость такой ракеты может в 3 раза превысить скорость ракет с химическим топливом.

Тугоплавкие металлы и их сплавы будут необходимы при производстве ракет с атомным ил И плазменным двигателем, так как в рабочих органах этих летательных аппаратов температура может достигать соответственно 1930 и 3300 — 6200 С.

Тугоплавкие металлы и их сплавы используют главным образом как жаропрочные.

Состав и жаропрочность некоторых сплавов на основе тугоплавких металлов.

Тугоплавкие металлы широко используют в качестве жаропрочных для работы в неокислительной среде — в вакууме, водороде, в инертных газах, а также в среде отходящих пороховых газов.

Тугоплавкие металлы и их сплавы используют главным образом как жаропрочные.

Разновидности термостойких красок

Ассортимент красок для печей, который сегодня предлагают отечественные и зарубежные компании, огромен. Он удовлетворит требования даже самого капризного покупателя. Особенно это касается цветовой палитры. То есть, в этом плане ограничений практически нет.

Что касается видов, то делятся они в зависимости от компонентов. По сути, как и любая другая лакокрасочная продукция. Далее рассмотрим классификацию термостойких красок для печей из кирпича.

Широкая цветовая палитраИсточник uastal.com

Кремний органические

Обычно такие краски используются для покрытия фасадов зданий. И в их основе лежат органические смолы. Но с недавнего времени производители стали выпускать и термостойкие аналоги для окрашивания печей и каминов

Обратите внимание, что на таре такого материала часто можно увидеть надпись – умеренно термостойкие. Для покраски нагревательных приборов их использовать нельзя, потому что такой материал выдерживает температуру не более +100 °C

Отметим, что сегодня кремний органические составы все чаще стали использовать для отделки нагревательных приборов. Во-первых, это самый дешёвый лакокрасочный материал из всех предлагаемых. Во-вторых, у него прекрасные характеристики. К примеру, вот достоинства этой краски:

  • отлична термостойкость;
  • высокая эластичность;
  • хорошая прочность плёнки, которая образуется на кирпичной поверхности;
  • великолепная влагостойкость, которая даёт возможность использовать краску для покрытия банных печей;
  • отличная адгезия, позволяющая наносить материал не только на кирпичную кладку, но и на штукатурку, и на бетон.

Кремний органический состав для покрытия поверхностей печей и каминовИсточник gidpokraske.ru

Акриловые

В основе этих красок лежат акрилаты, которые растворяются в воде или в углеводородном составе. В быту обычно используют первый вариант, он же воднодисперсионные. Этот лакокрасочный материал выдерживает температуру до +400 °C.

Самое важное, что такая краска глубоко проникает в поры и кирпича, и кладочного раствора, дополнительно упрочняя их. Обычно акриловую краску наносят в два слоя

При этом перед нанесением второго первый должен хорошо просохнуть. А высыхает слой – до 24 часов.

Что касается цветовой палитры, то она достаточно широкая. Правда, сочные оттенки здесь отсутствуют. Можно усилить цвет колером, но он быстро тускнеет. Так что делать этого не советуют.

Краска акриловая термостойкаяИсточник kraski-kapitel.ru

Алкидные

Это самая неподходящая краска для печей и каминов, так как выдерживает температуру только до +100 °C. Кроме того, у неё низкая эластичность. Поэтому уже через год эксплуатации поверхности нагревательных агрегатов покрываются паутинкой трещин.

Характеристики алкидной краски можно увеличить, если добавить в неё алюминиевую пудру. Но таким составом кирпичную кладку не покрасить. Он больше подойдёт для металлических поверхностей.

При этом алкидный состав, изготавливаемый на основе разбавителя, имеет резкий запах. Поэтому, работая с ним, обязательно необходимо надевать респиратор и защитные перчатки.

Алкидная термостойкая краска для отделки металлических нагревательных приборовИсточник ozone.ru

Термостойкий лак

Понятно, что краска после нанесения закроет собой естественный цвет кирпича. И в некоторых случаях дизайн помещения только потеряет от этого. Чтобы не портить кирпичную кладку разными оттенками, производители предлагают бесцветный лак. По всем характеристикам он краске не уступает, а по некоторым её превосходит. Например:

  • хорошая укрывистость;
  • прекрасная прочность плёнки;
  • легко покрывает и кирпич, и кладочный раствор;
  • легко поддаётся чистки и мойке бытовой химией;
  • долгий срок службы.

Специалисты рекомендую, покупая термостойкий лак, обращать внимание на следующее:

  • термоустойчивость – не ниже +200 °C, эта характеристика обязательно указывается производителем на упаковке;
  • влагостойкость – также указывается на таре;
  • в состав лака должен входить акрил, который увеличивает скорость высыхания.

Лак бесцветный термостойкий для печей и каминовИсточник gidpokraske.ru

Разделение металлов

В зависимости от температуры плавления металлы делятся на:

  1. Легкоплавкие: им необходимо не более 600Со. Это цинк, свинец, виснут, олово.
  2. Среднеплавкие: температура плавления колеблется от 600Со до 1600Со. Это золото, медь, алюминий, магний, железо, никель и большая половина всех элементов.
  3. Тугоплавкие: требуется температура свыше 1600Со, чтобы сделать металл жидким. Сюда относятся хром, вольфрам, молибден, титан.

В зависимости от температуры плавления выбирают и плавильный аппарат. Чем выше показатель, тем прочнее он должен быть. Узнать температуру нужного вам элемента можно из таблицы.

Еще одной немаловажной величиной является температура кипения. Это величина, при которой начинается процесс кипения жидкостей, она соответствует температуре насыщенного пара, который образуется над плоской поверхностью кипящей жидкости

Обычно она почти в два раза больше, чем температура плавления.

Обе величины принято приводить при нормальном давлении. Между собой они прямопропорциональны.

  1. Увеличивается давление — увеличится величина плавления.
  2. Уменьшается давление — уменьшается величина плавления.

Таблица легкоплавких металлов и сплавов (до 600С о )

Название элемента Латинское обозначение Температуры
Плавления Кипения
Олово Sn 232 Со 2600 Со
Свинец Pb 327 Со 1750 Со
Цинк Zn 420 Со 907 Со
Калий K 63,6 Со 759 Со
Натрий Na 97,8 Со 883 Со
Ртуть Hg — 38,9 Со 356.73 Со
Цезий Cs 28,4 Со 667.5 Со
Висмут Bi 271,4 Со 1564 Со
Палладий Pd 327,5 Со 1749 Со
Полоний Po 254 Со 962 Со
Кадмий Cd 321,07 Со 767 Со
Рубидий Rb 39,3 Со 688 Со
Галлий Ga 29,76 Со 2204 Со
Индий In 156,6 Со 2072 Со
Таллий Tl 304 Со 1473 Со
Литий Li 18,05 Со 1342 Со

Таблица среднеплавких металлов и сплавов (от 600С о до 1600С о )

Название элемента Латинское обозначение Температураы
Плавления Кипения
Алюминий Al 660 Со 2519 Со
Германий Ge 937 Со 2830 Со
Магний Mg 650 Со 1100 Со
Серебро Ag 960 Со 2180 Со
Золото Au 1063 Со 2660 Со
Медь Cu 1083 Со 2580 Со
Железо Fe 1539 Со 2900 Со
Кремний Si 1415 Со 2350 Со
Никель Ni 1455 Со 2913 Со
Барий Ba 727 Со 1897 Со
Бериллий Be 1287 Со 2471 Со
Нептуний Np 644 Со 3901,85 Со
Протактиний Pa 1572 Со 4027 Со
Плутоний Pu 640 Со 3228 Со
Актиний Ac 1051 Со 3198 Со
Кальций Ca 842 Со 1484 Со
Радий Ra 700 Со 1736,85 Со
Кобальт Co 1495 Со 2927 Со
Сурьма Sb 630,63 Со 1587 Со
Стронций Sr 777 Со 1382 Со
Уран U 1135 Со 4131 Со
Марганец Mn 1246 Со 2061 Со
Константин 1260 Со
Дуралюмин Сплав алюминия, магния, меди и марганца 650 Со
Инвар Сплав никеля и железа 1425 Со
Латунь Сплав меди и цинка 1000 Со
Нейзильбер Сплав меди, цинка и никеля 1100 Со
Нихром Сплав никеля, хрома, кремния, железа, марганца и алюминия 1400 Со
Сталь Сплав железа и углерода 1300 Со — 1500 Со
Фехраль Сплав хрома, железа, алюминия, марганца и кремния 1460 Со
Чугун Сплав железа и углерода 1100 Со — 1300 Со

Таблица тугоплавких металлов и сплавов (свыше 1600С о )

Название элемента Латинское обозначение Температуры
Плавления Кипения
Вольфрам W 3420 Со 5555 Со
Титан Ti 1680 Со 3300 Со
Иридий Ir 2447 Со 4428 Со
Осмий Os 3054 Со 5012 Со
Платина Pt 1769,3 Со 3825 Со
Рений Re 3186 Со 5596 Со
Хром Cr 1907 Со 2671 Со
Родий Rh 1964 Со 3695 Со
Рутений Ru 2334 Со 4150 Со
Гафний Hf 2233 Со 4603 Со
Тантал Ta 3017 Со 5458 Со
Технеций Tc 2157 Со 4265 Со
Торий Th 1750 Со 4788 Со
Ванадий V 1910 Со 3407 Со
Цирконий Zr 1855 Со 4409 Со
Ниобий Nb 2477 Со 4744 Со
Молибден Mo 2623 Со 4639 Со
Карбиды гафния 3890 Со
Карбиды ниобия 3760 Со
Карбиды титана 3150 Со
Карбиды циркония 3530 Со

Крылатые композиты

Но все же, несмотря на новые технологии работы с металлами, неметаллические материалы побеждают. Если в конструкциях российской гражданской авиатехники четвертого поколения применяется примерно 70% алюминиевых сплавов и 15−20% композитов, то последний Airbus уже на 50% состоит из композитных материалов, а американцы в Boeing 787 Dreamliner обещают повысить этот показатель до 70%. С ракетами и космическими аппаратами происходит то же самое. Причина — экономия массы выводимого на орбиту груза, и чем выше «номер ступени», тем больше выигрыш от использования композитов. Кстати, первой ракетной крупногабаритной «цельнопластмассовой» деталью почти полвека назад стал стеклопластиковый головной обтекатель на американских лунных зондах. Современный обтекатель ракеты «Протон-М», сложная сотовая пятислойная углепластиковая конструкция со специальным теплозащитным покрытием (ТЗП), весит на четверть меньше традиционного дюралевого. Большинство наружных ТЗП, которые предохраняют полезный груз от аэродинамического нагрева, работают на испарении и «уносе массы». Это полимерные материалы на основе, как правило, силиконовой резины с различными наполнителями — как снижающими массу покрытия, так и замедляющими его выгорание. Реализован принцип «кипящего чайника»: пока вода не выкипела, температура чайника выше 1000С не поднимется. В результате снаружи, например, головного обтекателя температура свыше 9000С, а в приборном отсеке — всего 60!

Физико-механические свойства

Металлы с высокой температурой плавления (тугоплавкие) являются переходными элементами. Согласно таблице Менделеева выделяют 2 их разновидности:

  • Подгруппа 5A – тантал, ванадий и ниобий.
  • Подгруппа 6A – вольфрам, хром и молибден.

Наименьшей плотностью обладает ванадий – 6100 кг\м3, наибольшей вольфрам – 19300 кг\м3. Удельный вес остальных металлов находится в рамках этих значений. Эти металлы отличаются малым коэффициентом линейного расширения, пониженной упругостью и теплопроводностью.

Данные металлы плохо проводят электрический ток, но обладает таким качеством как сверхпроводимость. Температура сверхпроводящего режима составляет 0,05-9 К исходя из вида металла.

Абсолютно все тугоплавкие металлы отличаются повышенной пластичностью в комнатных условиях. Вольфрам и молибден помимо этого выделяются на фоне остальных металлов более высокой жаропрочностью.

Коррозионная стойкость

Жаропрочным металлам свойственна высокая стойкость к большинству видов агрессивных сред. Сопротивление коррозии элементов 5A подгрупп увеличивается от ванадия к танталу. Как пример, при 25 ºC ванадий растворяется в царской водке, между тем как ниобий полностью инертен по отношению к данной кислоте.

Тантал, ванадий и ниобий отличаются устойчивостью к воздействию расплавленных щелочных металлов. При условии отсутствия в их составе кислорода, которые значительно усиливает интенсивность протекания химической реакции.

Молибден, хром и вольфрам имеют большую сопротивляемость к коррозии. Так азотная кислота, которая активно растворяет ванадий, значительно менее воздействует на молибден. При температуре 20 ºC данная реакция вообще полностью останавливается.

Все тугоплавкие металлы охотно вступают в химическую связь с газами. Поглощение водорода из окружающей среды ниобием осуществляется при 250 ºC. Тантал при 500 ºC. Единственный способ остановить эти процессы – проведение вакуумного отжига при 1000 ºC. Стоит заметить, что вольфрам, хром и молибден куда менее склонны к взаимодействию с газами.

Как уже было сказано ранее, лишь хром отличается сопротивляемостью к окислению. Данное свойство обусловлено его способностью образовывать твердую пленку оксида хрома на своей поверхности. Растворение кислорода хромом происходит только при 700 С. У остальных тугоплавких металлов процессы окисления начинаются ориентировочно при 550 ºC.

Хладноломкость

Распространению использования жаропрочных металлов в производстве мешает обладание ими повышенной склонности к хладноломкости. Это означает, что при падении температуры ниже определенного уровня происходит резкое возрастание хрупкости металла. Для ванадия такой температурой служит отметка в -195 ºC, для ниобия -120 ºC, а вольфрама +330 ºC.

Наличие хладноломкости жаропрочными металлами обусловлено содержанием примесями в их составе. Молибден особой чистоты (99,995%) сохраняет повышенные пластические свойства вплоть до температуры жидкого азота. Но внедрение всего 0,1% кислорода сдвигает точку хладноломкости к -20 С.

Гость форума
От: admin

Эта тема закрыта для публикации ответов.