Гост 1050-88 прокат сортовой, калиброванный, со специальной отделкой поверхности из углеродистой качественной конструкционной стали. общие технические условия (с изменениями n 1, 2)

Алан-э-Дейл       10.09.2022 г.

Углеродистая конструкционная сталь — обыкновенное качество

Углеродистые конструкционные стали обыкновенного качества выплавляются различных марок в зависимости от группы, к которой принадлежит данная плавка стали, способа выплавки, назначения и гарантируемых свойств.

Углеродистые конструкционные стали обыкновенного качества наиболее дешевы.

Углеродистые конструкционные стали обыкновенного качества предназначаются для изготовления различных металлоконструкций, а также слабонагружеиных леталей машин.

Углеродистые конструкционные стали обыкновенного качества изготавливают следующих марок: СтО, Ст1, Ст2, СтЗ, Ст4, Ст5, Стб.

Углеродистые конструкционные стали обыкновенного качества, поставляемые по механическим свойствам, по ГОСТ 380 — 60 ( группа А) имеют марки СтО, Ст1, Ст2, СтЗ, Ст4, Стб, Стб и Ст7, в которых цифры указывают на то, что в стали более высокой марки повышается содержание углерода, увеличиваются прочностные свойства и уменьшаются пластические свойства.

Углеродистые конструкционные стали обыкновенного качества, поставляемые по химическому составу по ГОСТ 380 — 60 ( группа Б) имеют марки: мартеновские стали МСтО, МСт1кп, МСтЗкп, МСтЗ, МСт4кп, МСт4, МСт5, МСтб и МСт7; бессемеровские стали БСтО, БСтЗкп, БСтЗ, БСтбкп, БСт4, БСт5 и БСтб.

Углеродистую конструкционную сталь обыкновенного качества по ГОСТ 380 — 71 разделяют на три группы: группу А — сталь поставляют с гарантируемыми механическими свойствами, группу Б — сталь поставляют с гарантируемым химическим составом, группы 1 В — сталь поставляют с гарантируемыми механическими свойствами и с отдельными требованиями по химическому составу.

Марки углеродистых конструкционных сталей обыкновенного качества , поставляемых по механическим свойствам ( группа А по ГОСТ 380 — 60), обозначаются: Ст. Увеличение цифры в марке стали указывает на повышение содержания углерода, прочности, твердости и износостойкости, снижение пластичности и ударной вязкости.

Изделия из углеродистых конструкционных сталей обыкновенного качества широко применяются в строительстве для сварных, клепаных и болтовых конструкций, а также для выполнения кровельных работ. Среднеуглеродистые стали ( СГ5, Ст5Г), обладающие большей прочностью, чем низкоуглеродистые, предназначены для рельсов, железнодорожных колес, валов, шкивов, шестерен и других деталей грузоподъемных машин.

В начале марки углеродистой конструкционной стали обыкновенного качества общего назначения указывают обозначение стандарта ( буква А и трехзначное число — номер стандарта) и через косую черту — заглавные буквы А, В, С, D ( Grade А, В, С, D) или двухзначные цифры, характеризующие марку стали.

Трубы большей частью изготовляют из углеродистых конструкционных сталей обыкновенного качества Ст.

В ГОСТ 380 — 41 классифицированы углеродистые конструкционные стали обыкновенного качества.

Для изготовления болтов, винтов, шпилек и гаек применяют углеродистые конструкционные стали обыкновенного качества марок Ст. Для резьбовых деталей, работающих в особых условиях, используют специальные стали и сплавы.

Решающим критерием работоспособности стальных штампованных деталей в подавляющем большинстве случаев является их жесткость, а не прочность. Поэтому чаще всего удается обходиться углеродистой конструкционной сталью обыкновенного качества и качественной. При этом рекомендуется пользоваться марками стали с низким содержанием углерода как более дешевыми и обладающими наибольшей способностью к формообразованию. Кроме этого, применение яизкоуглеродистой стали сопряжено с уменьшением усилия штамловки на всех, операциях, что приводит к возможности использования менее мощных прессов и к снижению расхода энергии.

По назначению углеродистые стали делят на конструкционные и инструментальные. Первые в свою очередь делятся на углеродистые конструкционные стали обыкновенного качества и углеродистые конструкционные качественные стали.

Конструкционная легированная сталь

Нормативный документ: качественная конструкционная легированная сталь изготовляется согласно ГОСТ 4543-71.

Легированная сталь — сталь, в которую в процессе легирования в определенных количествах вводят специальные элементы, обеспечивающие требуемые свойства. Такие элементы называют легирующими. Они могут повышать прочность и коррозионную стойкость стали и снижать опасность ее хрупкого разрушения.

Для легирования стали используются следующие химические элементы: марганец (Mn) — Г; кремний (Si) — С; хром (Cr) — Х; никель (Ni) — Н; медь (Cu) — Д; азот (N) — А; ванадий (V) — Ф; ниобий (Nb) — Б; вольфрам (W) — В; селен (Se) — Е; кобальт (Co) — К; бериллий (Be) — Л; молибден (Mo) — М; бор (B) — Р; титан (Ti) — Т; алюминий (Al) — Ю.

Классификация конструкционной легированной стали

По отношения общей массы легирующих элементов к массе стали:

  • сталь высоколегированная — более 10%;
  • сталь среднелегированная — более 2,5-10%;
  • сталь низколегированная — до 2,5%.

В зависимости от основных легирующих элементов:

  • хромистая;
  • марганцовистая;
  • хромомарганцовая;
  • хромокремнистая;
  • хромомолибденовая;
  • хромомолибденованадиевая;
  • хромованадиевая;
  • никельмолибденовая;
  • хромоникелевая;
  • хромоникелевая с бором;
  • хромокремнемарганцовая;
  • хромокремнемарганцовоникелевая;
  • хромомарганцовоникелевая;
  • хромомарганцовоникелевая с титаном и бором;
  • хромоникельмолибденовая;
  • хромоникельмолибденованадиевая;
  • хромоникельванадиевая;
  • хромоалюминиевая;
  • хромоалюминиевая с молибденом;
  • хромомарганцовоникелевая с молибденом;
  • хромомарганцовоникелевая с молибденом и титаном.

В зависимости от хим. состава и свойств:

  • качественная;
  • высококачественная — А;
  • особо высококачественная (сталь электрошлакового переплава) — Ш.(например ШХ15)

По видам обработки:

  • прокат горячекатаный и кованый (в том числе с обточенной или ободранной поверхностью);
  • калиброванный;
  • со специальной отделкой поверхности.

По качеству поверхности:

  • 1 группа;
  • 2 группа;
  • 3 группа.

По состоянию материала:

  • без термической обработки;
  • термически обработанный — Т;
  • нагартованный — Н.

Марки конструкционной легированной стали

Марки стали: 15Х, 20Х, 30Х, 35Х, 38ХА, 40Х, 45Х, 50Г, 12ХН, 20ХН, 40ХН, 14ХГН, 19ХГН, 20ХГНМ, 30ХМ.

Заменители некоторых марок стали:

  • 20Х — 15Х, 20ХН, 12ХН2, 18ХГТ;
  • 30ХГСА — 40ХФА, 35ХМ, 40ХН, 25ХГСА, 35ХГСА;
  • 40Х — 45Х, 38ХА, 40ХН, 40ХС.

Обозначение марок конструкционной легированной стали: две первые цифры указывают содержание углерода в сотых долях процента, цифры после букв указывают содержание легирующего элемента в целых единицах.

Применение конструкционной легированной стали

Марка стали Область применения
60С2(А) Рессоры из полосовой стали толщиной 3-16мм и пружинной ленты толщиной 0,08-3мм; витые пружины из проволоки диаметром 3-16мм.
70СЗА Тяжелонагруженные пружины ответственного назначения. Сталь склонна к графитизации.
50ХГ(А) Рессоры из полосовой стали толщиной 3-18мм.
50ХФА(ХГФА) Ответственные пружины и рессоры, работающие при повышенной температуре (до 300°С), или подвергаемые многократным переменным нагрузкам.
60C2XA Большие высоконагруженные пружины и рессоры ответственного назначения.
60C2H2A(C2BA) Ответственные высоконагруженные пружины и рессоры из калиброванной стали и пружинной ленты.
20Х Кулачковые муфты, втулки, шпиндели, направляющие планки, плунжеры, оправки, копиры, шлицевые валики и др.
40Х Зубчатые колеса, шпиндели и валы в подшипниках качения, червячные валы и др.
45Х, 50Х Зубчатые колеса, шпиндели, валы в подшипниках качения, червячные и шлицевые валы, и др. детали, работающие на средних скоростях при небольшом давлении.
38ХА Зубчатые колеса, работающие на средних скоростях при средних давлениях.
45Г2, 50Г2 Крупные малонагруженные детали: валы, зубчатые колеса тяжелых станков и т.п.
18ХГТ Детали, работающие на больших скоростях при высоких давлениях и нагрузках.
20ХГР Тяжелонагруженные детали, работающие при больших скоростях и нагрузках.
15ХФ Некрупные детали, подвергаемые цементации и закалке с низким отпуском.
40ХС Мелкие детали высокой прочности.
40ХФА Ответственные высокопрочные детали, подвергаемые закалке и высокому отпуску; средние и мелкие детали сложной формы, работающих в условиях износа; ответственные сварные конструкции, работающие при знакопеременных нагрузках.
35ХМ Валы, детали турбин и крепеж, работающие при повышенной температуре.

Свариваемость: cварка конструкционных легированных сталей несколько затруднена из-за склонности к закалке околошовной зоны и образованию в ней хрупких структур (требуется специальная технология сварки).

Классификация

Принято разделять инструментальные качественные стали на 5 основных групп:

  1. Износостойкие, теплостойкие и высокотвердые – группа, представленная быстрорежущей легированной сталью. Кроме этого в данную группу относят сплавы с ледебуритной структурой, которая характеризуется повышенной концентрацией углерода (более 3%). Применение инструментальных углеродистых сталей данной группы заключается в изготовлении инструментов, которые могут подвергаться воздействию высокой температуры из-за установки высоких скоростей резания.
  2. Теплостойкие и вязкие стали представлены сплавом, который имеет в своем составе молибден, хром и вольфрам. Химический состав инструментальной углеродистой стали данной группы характеризуется низким значением концентрации углерода.
  3. Нетеплостойкие, вязкие и высокотвердые стали имеют небольшое количество примесей и среднее значение углерода. Данной группе характерен невысокий показатель прокаливаемости.
  4. Средняя теплостойкость, высокая твердость, износостойкость – качества, свойственные металлам с 2-3% углерода и 5-12% хрома.
  5. Низкая устойчивость к теплу и высокая твердость характерны сталям с заэвтектоидной структурой. В большинстве случае они не имеют легирующих элементов или их концентрация очень мала. Высокий уровень твердости обеспечивается за счет высокой концентрации углерода.

Высококачественная инструментальная сталь может подвергаться дополнительной химико-термической обработке для изменения состава и перестроения кристаллической решетки, за счет чего и достигаются необычные эксплуатационные качества.

Изделия из углеродистой инструментальной стали

Твердость считается основным параметром, высокое значение которого не позволяет использовать сталь при изготовлении инструментов или деталей, подвергающихся во время эксплуатации ударам или вибрации. Эта рекомендация связана с тем, что при увеличении концентрации углерода повышается твердость, но вязкость уменьшается. Уменьшение вязкости становится причиной повышения хрупкости структуры, в результате воздействия ударной нагрузки могут появляться трещины и другие дефекты, поверхность откалываться.

Классификация по уровню твердости выглядит следующим образом:

  1. Высокий показатель вязкости и пониженная твердость характерны металлам, которые в составе имеют не более 0,4-0,7% углерода.
  2. Высокая износостойкость и твердость поверхностного слоя достигаются при насыщении структуры металла углеродом до 0,7-1,5%.

Больший показатель концентрации углерода делает металл очень хрупким, что не позволяет его использовать в качестве материала при изготовлении инструмента. Кроме этого легирующие элементы способны повысить вязкость и снизить хрупкость при условии большой концентрации углерода. В некоторых случаях проводится химическая обработка для обеспечения износостойкой поверхности и вязкого основания, за счет чего инструмент или деталь приобретает высокие эксплуатационные качества.

Классификация и марки

Существует несколько основных критериев по которым подразделяются углеродистые марки. Одним из самых важных среди них являются условия проведения раскисления. Выделяют следующие низкоуглеродистые стали:

  • Спокойные. Включает минимальное содержание в составе окиси железа, что делает процесс выплавки «спокойным» — без бурного выделения углекислоты с зеркала металла. Возможным это стало благодаря введению раскислителей: алюминий, марганец и кремний. Все выходящие газы скапливаются в усадочной раковине, которая впоследствии обрубается, что в результате дает плотный и однородный металл.
  • Кипящие. Раскисляются одним марганцем. Имеют увеличенное количество оксида железа в составе. Процесс плавки сопровождается выделением углекислого газа, что создает впечатление будто металл кипит. Эти стали менее прочны и менее однородны по химическому составу, но при этом стоят дешево и имеют низкий процент отходов в производстве.
  • Полуспокойные. Помимо марганца для удаления кислорода дополнительно применяют алюминий. По характеристикам эта углеродистая сталь представляет собой что-то среднее между кипящими и спокойными сплавами.

Помимо степени раскисления низкоуглеродистые марки также классифицируются по наличию неметаллических включений в своем составе. Исходя из этого они различаются на:

  • Обыкновенного качества;
  • Качественные машиностроительные.

Рассмотрим каждый пункт более подробно.

Стали обыкновенного качества. К ним не предъявляются строгие требования как к выбору шихты, так и к плавке и разливке. Фосфора в них допускается не более 0,08%, а серы не более 0,06%. Разливают такой сплав в крупногабаритные слитки, поэтому для них характерно появление зональной ликвации.

Сталь обыкновенного качества идет на производство разного рода горячекатаного металлопроката: прутки ГОСТ 4290-90, швеллеры ГОСТ 8240-97, балки ГОСТ 8239-95, уголки ГОСТ 8509-95 и прочие. Этот прокат служит материалом для производства разного рода болтовых, клепочных и сварных металлоконструкций. В станкостроении из нее производят малоответственные детали не требующие проведения термобработки: оси, вальцы, зажимы и т.д.

Исходя из гарантированности указанных свойств сталь обыкновенного качества бывает:

  • Группы «А». Поставка происходит по механическим характеристикам, химический состав при этом не нормируется. Маркируется «Ст» и цифрой от 0 до 6. (Ст.6, Ст.5 и т.д.). С увеличением цифры возрастает и прочность выбранного сплава.
  • Группы «Б». Такие металлы идут с нормированным химсоставом. В маркировке дополнительно прописывается способ получения сплава.
  • Группы «В». Здесь в сталях регулируются одновременно прочностные характеристики и химсостав. В маркировке дополнительно указывается буква В.

Качественные машиностроительные стали производятся в более строгих условиях выплавки. Обладают меньшим количеством вредных образований в химсоставе: сера до 0,04%, фосфор до 0,04%. Маркируются надписью «сталь» и цифрой, указывающей количество карбидов в сотых долях процента.

Сталь 08 и 10 применяются в ответственных узлах машиностроения. Из них производят втулки, змеевики, прокладки и т.д. Перед использованием все детали обязательно подвергаются цементации или любому другому химико-термическому упрочнению.

Стали 15, 20, 25 используются для узлов, работающих на износ и не испытывающих повышенных механических нагрузок: рычаги, шестерни, толкатели клапанов и т.д.

Механическая обработка

Выбор режимов резания и подбор инструмента – это важная часть, необходимая для составления правильного технологического процесса обработки деталей, изготовленных из Ст3.

Для ее точения или фрезерования применяют режущий инструмент, выполненный из твердых сплавов ВК8, Т5К10. Для получения резьбы и внутренней, и наружной применяют метчики и плашки, выполненные из сталей Р18, Р6М5. При обработке на станках токарно-фрезерной группы целесообразно применять водоэмульсионные СОЖ, например, Эмульсол. Кстати, при нарезании резьбы вручную желательно использовать касторовое масло, которое существенно облегчает работу.

Выбор скорости обработки производят на основании свойств стали, технических параметров станочного оборудования и вида обработки. Например, при диаметре заготовки от 60 до 100 мм, допустимо использовать токарный резец с размером державки 16х25 мм. При глубине резания в 3 мм, скорость подачи суппорта должна равняться от 0,7 до 1,2 мм на один оборот шпинделя. При обработке на токарном станке допускается скорость вращения шпинделя в пределах 700 оборотов в минуту.

Характеристики ножевых сталей

Чтобы нормально ориентироваться при выборе лучшей стали для ножа, прежде всего нужно как следует разобраться в тех понятиях, которые используются при описании ее свойств. Таковых несколько. Именно их совокупность определяет плюсы и минусы стали для ножей:

Твердость. Говоря простым языком, она выражает способность стали без последствий продавливать (прорезать) различные материалы, не испытывая при этом повреждений. Твердость стали выражается в единицах твердости по шкале Роквелла (HRc). Для стали ножей диапазон рабочей твердости, как правило, составляет от 52 до 61 ед. Твердостью в 60 единиц, для примера, обладает обычное стекло и напильник. Именно с этим связана методика примерного определения твердости клинка: если напильник способен оставлять царапины на его поверхности, то его твердость, очевидно, ниже 60 единиц, а если клинок царапает стекло — то выше.
Прочность. Это способность стали выдерживать различные нагрузки. Используя нож в качестве рычага, мы проверяем его на прочность. Чем она выше, тем большие нагрузки металл способен выдержать без остаточных повреждений. Очень прочными являются современные порошковые стали благодаря равномерной внутренней структуре и большой плотности состава.
Ударная вязкость. Это способность стали сохранять свои прочностные характеристики при ударной нагрузке. Вязкая сталь практически не имеет шансов сломаться при рубке или при падении на твердую поверхность. Многие инструментальные стали, такие как Х12 МФ, или D2, имеют не очень хорошую ударную вязкость, и хотя в целом они очень прочные, ставить на рубящие ножи их не стоит.
Износостойкость. Это понятие характеризует, насколько быстро металл истирается при соприкосновении с абразивными поверхностями. Данный показатель тесно связан с твердостью стали, и с плотностью ее структуры.
Стойкость режущей кромки. Как следует из названия, это способность ножа удерживать остроту. Кромка является самым уязвимым участком клинка, и только хорошая сталь способна обеспечить долгое сохранение всех своих режущих свойств при остро отточенном лезвии.
Коррозионная стойкость. Данный показатель определяет способность металла сохранять свою химическую однородность при воздействии окислителей или агрессивных сред, в которых может использоваться клинок. Коррозионная стойкость никогда не бывает абсолютной. Порой именно она выходит на первый план при выборе того, какая сталь для ножа будет оптимальной.
Красностойкость

Этот термин редко встречается среди характеристик сталей для ножей, но иногда его понимание очень важно. По сути, красностойкость — это жаропрочность клинка, то есть его способность не изменять свою кристаллическую структуру при сильном нагревании.

Основные свойства

Сталь 10 (ГОСТ определяет концентрацию всех химических элементов и наличие определенных характеристик) относится к группе конструкционных углеродистых металлов.

Широкая область применения материала связана с особыми эксплуатационными характеристиками:

  1. Хорошая пластичность, что позволяет применять их для производства штампованных деталей. Для выпуска большого количества продукции часто применяется технология холодной штамповки.
  2. Хорошая степень свариваемости материала. Применение сварочного аппарата не требует предварительного нагрева заготовки. Процесс сварки может проводится при применении различных технологий. Получаемый шов характеризуется отличной прочностью и надежностью, дополнительная термическая обработка не требуется.
  3. Структура характеризуется хорошей коррозионной стойкостью. Стоит учитывать, что эта сталь не относится к группе нержавеек, так как в состав не включается большое количество хрома или других легирующих элементов. Стойкость к влаге существенно расширяет область применения материала, однако поверхность может реагировать на воздействие некоторых кислот и других химических элементов.
  4. Стоит учитывать и низкую теплостойкость. Именно поэтому ст10, характеристики которой определяют широкое распространение в машиностроительной области, нельзя применять при изготовлении деталей, которые подвержены активному износу. Слишком сильный нагрев может привести к существенному ухудшению эксплуатационных характеристик. К примеру, нагрев на момент трения становится причиной снижения износоустойчивости, а также твердости поверхности.
  5. Есть возможность провести обработку резанием. Это свойство также указывается в ГОСТ 1050-88. Заготовки из рассматриваемой стали легко обрабатывать на станках и ручных инструментом.
  6. Высокий предел выносливости определяет применение материала при изготовлении ответственных деталей, которые предназначены для длительной работы.
  7. Прокаливаемость позволяет также существенно расширить область применения изготавливаемых деталей.

Механические свойства стали 10

Для улучшения основных качеств проводится термообработка стали 10. Она позволяет существенно повысить твердость поверхности. Процесс термической обработки может привести к тому, что структура становится хрупкой. Именно поэтому следующий шаг заключается в отпуске для снижения внутренних напряжений. Охлаждение заготовки проводится на открытом воздухе или в воде, а также масле. В последнее время чаще всего используется масло, так как равномерное охлаждение позволяет снизить вероятность появления серьезных дефектов в виде окалины и структурных трещин.

Высокоуглеродистые стали

Высокоуглеродистые стали, содержащие 0,55 -1,00 % углерода и 0,30-0,90 % марганца имеют более ограниченное применение, чем среднеуглеродистые стали. Дело в том, что эти стали более дорогие в производстве, имеют низкую пластичность и, следовательно, с большим трудом подвергаются горячей обработке, а также плохо свариваются. Высокоуглеродистые стали находят применение в производстве пружин, при изготовлении различных режущих инструментов, включая элементы землеройных машин и машин для обработки сельскохозяйственных земель, а также высокопрочной проволоки – везде, где требуется более высокая износостойкость и более высокая прочность, чем могут обеспечить стали с более низким содержанием углерода.

Применение

Применение инструментальных углеродистых сталей во многом зависит от химического состава. Чаще всего применяется для получения:

  1. Режущего инструмента. На протяжении многих лет для изготовления инструментов использовали обычную сталь, которая в процессе работы могла нагреваться и быстро изнашиваться. На тот момент устанавливались станки токарной и сверлильной группы, которые могли проводить обработку только при низкой скорости и невысокой подачи. Появление современного оборудования, в частности станков с ЧПУ, привело к повышению требований, предъявляемых к инструменту. Только появление инструментальной стали и твердых сплавов позволило полностью раскрыть потенциал современного оборудования. Также не стоит забывать, что для получения качественных поверхностей должна существенно увеличиваться скорость подачи, повысить производительность можно при увеличении подачи. Современные режущие инструменты могут выдерживать неоднократные циклы нагрева и охлаждения, срок эксплуатации при этом увеличивается в несколько десятков раз.
  2. Высококачественных деталей. Примером можно назвать конструкцию ДВС, которая имеет поверхности с точными размерами и шероховатостью. Для того чтобы при эксплуатации подвижные элементы не меняли свою форму по причине нагрева их изготавливают из инструментальной стали.
  3. Приборов, применяемых для проведения точных измерений. Для получения небольших деталей с точностью линейных размеров в несколько сотен миллиметров заготовка не должна нагреваться или деформироваться за счет оказываемого давления со стороны режущего инструмента.
  4. Литейной прессформы, которая должна выдерживать существенное давление.

Применение углеродистых инструментальных сталей в зависимости от марки

Для изготовления деталей больше всего подходить марка У7 или У7А, для изготовления режущего и другого инструмента У10 или У12. Данная закономерность связана с тем, что для получения режущего инструмента должны использоваться более твердые металлы.

Маркировка углеродистых инструментальных сталей в данном случае указывает на процентное содержание углерода и наличие других примесей.

При холодном прессовании могут применяться марки У10 – У12. Проведенные тесты указывают на то, что их твердость составляет 57-59 HRC. Среди особенностей отметим:

  1. Достаточно высокую вязкость.
  2. Высокий уровень сопротивления деформациям пластического типа.
  3. Повышенная износостойкость.

https://youtube.com/watch?v=duRwmp-2hFg

Если габариты инструмента большие, то могут применяться сплавы, в состав которых включаются полезные примеси.

Стали углеродистые инструментальные

Из инструментальных углеродистых сталей получают горячекатаную, кованую и калиброванную сталь, сталь серебрянку, сталь для сердечников, а также слитки, листы, ленту, проволоку и другую продукцию. Из этих сталей изготовляют режущий инструмент для обработки металлов, дерева и пластмасс, измерительный инструмент, штампы для холодного деформирования.

Теплостойкость инструментальных углеродистых сталей не превышает 200°С, при нагревании выше этой температуры они теряют свою твердость, а следовательно режущие свойства и износостойкость.

Инструментальные углеродистые стали условно можно разделить на две группы (ГОСТ 1435-99): качественные стали У7, У8, У8Г, У9, У10, У11, У12 и У13 и высококачественные марок У7А, У8А, У8ГА, У9А, У10А, У НА, У12А и У13А.

В качественных инструментальных углеродистых сталях допускается содержание 0,03% серы и 0,035% фосфора, в высококачественных – 0,02% серы и 0,03% фосфора. Стали, полученные методом электрошлакового переплава, содержат до 0,015% серы. В зависимости от содержания хрома, никеля и меди инструментальные углеродистые стали подразделяются на пять групп: 1-я – качественные стали всех марок, предназначенные для изготовления продукции всех видов (кроме патенти- рованной проволоки и ленты); 2-я – высококачественные стали всех марок, предназначенные для тех же целей, что и стали первой группы; 3-я – стали марок У10А и У12А для изготовления сердечников; 4-я – стали всех марок для производства патентированной проволоки и ленты; 5-я – стали марок У7÷У13 для изготовления горяче- и холоднокатаных листов и лент, в том числе термически обработанных толщиной до 2,5 мм (кроме патентированной ленты), а также стали этих марок для производства горячекатаной и кованой сортовой стали и холоднотянутой шлифованной стали (серебрянки).

Инструментальная сталь должна обладать высокой твердостью (63÷64 HRC3), значительно превышающей твердость обрабатываемого материала, износостойкостью и теплостойкостью (способностью сохранять свойства при высоких температурах).

Измерительный инструмент, изготовленный из такой стали, должен быть прочным (ав = 590÷640 МПа), длительное время сохранять заданные размеры и форму. Рабочие детали штампов и накатных роликов для холодного деформирования (вытяжки, гибки, высадки, пробивки отверстий, накатки, раскатки), сделанные из этой стали, должны иметь высокую твердость, обладать износостойкостью при достаточной вязкости. Все это достигается путем закалки с отпуском, а для измерительного инструмента и за счет искусственного старения. В табл. 12 приведены свойства углеродистой инструментальной стали, в табл. 13- примерное назначение инструментальной углеродистой стали.

Таблица 12. Свойства стали углеродистой инструментальной (ГОСТ 1435 — 74)

Марка стали Механические свойства
σт σв

МПа

δ, % Дж/см3 HRС
У7А 630 21 63
У8А 590 63
У10А 590 23 63
УНА 63
У12А 640 28 64
У13А 64

Таблица 13. Примерное назначение стали углеродистой инструментальной

Марка стали Назаначение
У9 Деревообрабатывающий режущий инструмент (сверла, фрезы, ножи) и ножовочные полотна для обработки стали
У10, У11 и У12 Металлорежущий инструмент (фасонные резцы, сверла, метчики, плашки, развертки, фрезы, напильники и ходовые винты прецизионных станков)
У13 Бритвенные ножи, лезвийный хирургический инструмент и напильники
У7 и У8 Слесарные молотки, зубила, губки тисков, шаблоны, скобы
У8, У9 и У10 Детали микрометрического инструмента, гладкие и резьбовые калибры, цанги, фрикционные диски, пружины и др.

Как правило, изготовлению инструмента предшествует отжиг на зернистый цементит, который способствует лучшей обрабатываемости резанием и уменьшает коробление деталей при закалке.

Это интересно: Устройство и сфера применения стального троса — объясняем обстоятельно

Маркировка стали

Все углеродистые согласно маркировке стали делятся на три категории:

  • Группа А. К ней относятся сплавы, соответствующие строго заданным механическим свойствам;
  • Группа Б. Стали этой группы четко соответствуют по химическому составу;
  • Группа В. Продукция этой группы должна соответствовать механическим, физическим и химическим свойствам одновременно.

У стали обыкновенного качества в начале обозначения стоят буквы Ст. За буквами Ст в маркировке идет цифровое обозначение. Цифра в маркировке обозначает номер марки металла. Далее, после номера, вписывается тип сплава. Обозначение типа сплава следующее:

  • КП – кипящий;
  • ПС – полуспокойный;
  • СП – спокойный.

Непосредственно перед буквенным обозначением сплава стоит буква, обозначающая группу стали. Если продукт относится к группе А, то буква не проставляется.

Цветовая маркировка

Для быстрого определения марки производитель наносит специализированной краской соответствующие полосы:

  • Ст0 – зеленая полоса + красная.
  • Ст1 – одна желтая + одна черная.
  • Ст3Гсп – коричневая + синяя.
  • Ст3 – красная.
  • Ст4 – черная.
  • Ст5Гпс – коричневая + зеленая.
  • Ст5 – зеленая.
  • Ст6 – синяя.

Цветовая маркировка

Степень наличия углерода в материале определяется в самом начале. Количество углерода для металла группы А указывается в сотых частях процента. Для Б и В – в десятых. В некоторых случаях после этих цифр производитель проставляет букву Г. Она означает, что в изделии содержится большое количество марганца.

Категории качественной стали

Качественные стали разной маркировки можно разделить на несколько категорий:

  • 08пс, 08кп – имеют высокую пластичность. Хорошо подходят для холодной прокатки;
  • От 10 до 25 – используется для горячей штамповки или прокатки;
  • От 60 до 85 – применяется для выполнения ответственных конструкций, таких как рессоры, пружины, муфты сцепления;
  • 30, 50, 30Г, 50Г – повышенной прочности, выдерживающие большие нагрузки.

4 Требования к химическому составу стали

4.1 Химический состав стали (основные элементы) по анализу ковшевой пробы должен соответствовать нормам, указанным в таблице 1.

Таблица 1

В процентах

4.2 В стали марок СтЗкп, СтЗпс, СтЗсп, Ст4кп, Ст4пс, Ст4сп, Стбпс, Стбсп допускается снижениенижнего предела массовой доли марганца на 0,10 % для тонколистового проката и толстолистового проката толщиной до 10 мм при условии обеспечения требуемого уровня механических свойств.

В стали марок СтЗкп, СтЗпс и СтЗсп, предназначенной для изготовления сортового и фасонного проката, кроме поставляемого для судостроения и вагоностроения, допускается снижение нижнегопредела массовой доли марганца до 0,25 %, а нижний предел массовой доли углерода не нормируетсяпри условии обеспечения требуемого уровня механических свойств.

В стали марок Ст2кп, СтЗкп и Ст4кп, предназначенной для изготовления сортового и фасонного проката, допускается повышение массовой доли кремния до 0,07 %.

4.3 При раскислении полуспокойной стали алюминием, титаном или другими раскислителями, несодержащими кремний, а также несколькими раскислителями (ферросилицием и алюминием, ферросилицием и титаном и др.) массовая доля кремния в стали допускается менее 0,05 %. Раскисление титаном, алюминием и другими раскислителями, не содержащими кремний, указывают в документе окачестве.

4.4 Массовая доля хрома, никеля и меди в стали всех марок, кроме Ст0, должна быть не более0,З0 % каждого. В стали марки Ст0 массовая доля хрома, никеля и меди не нормируется.

В стали, изготовленной скрап-процессом, допускается массовая доля меди до 0,40 %, хрома и никеля — до 0,З5 % каждого. При этом в стали марок СтЗкп, СтЗпс, СтЗсп, СтЗГпс и СтЗГсп массоваядоля углерода должна быть не более 0,20 %.

4.5 Массовая доля серы в стали всех марок, кроме Ст0, должна быть не более 0,050 %, фосфора — не более 0,040 %. В стали марки Ст0 массовая доля серы должна быть не более 0,060 %, фосфора — не более 0,070 %.

4.6 Массовая доля азота в стали должна быть не более:

  • выплавленной в электропечах — 0,012 %;
  • мартеновской и конвертерной — 0,010 %.

Допускается повышение массовой доли азота в стали до 0,01З %, при условии снижения нормы массовой доли фосфора по 4.5 не менее чем на 0,005 % при каждом повышении массовой доли азотана 0,001 %.

4.7 Массовая доля мышьяка в стали всех марок, кроме Ст0, должна быть не более 0,080 %. Массовая доля мышьяка в стали марки Ст0 не нормируется.

4.8 Предельные отклонения по химическому составу готового проката, слитков, заготовок, поковок и изделий дальнейшего передела должны соответствовать нормам, указанным в таблице 2.

Таблица 2

В процентах

Гость форума
От: admin

Эта тема закрыта для публикации ответов.